載重貨車車架設(shè)計(jì)及有限元分析
摘要
汽車車架是整個(gè)汽車的基體,是汽車設(shè)計(jì)中一個(gè)重要的環(huán)節(jié)。車架支撐著發(fā)動(dòng)機(jī)離合器、變速器、轉(zhuǎn)向器、非承載式車身和貨箱等所有簧上質(zhì)量的重要機(jī)件,承受著傳給它的各種力和力矩。因此,車架必須要有足夠的彎曲剛度,也要有足夠的強(qiáng)度,以保證其有足夠的可靠性與壽命。同時(shí),隨著現(xiàn)在汽車的發(fā)展,載重貨車的乘坐舒適性,操控性能也在不斷提高,因此車架的設(shè)計(jì)還應(yīng)同時(shí)兼顧舒適性和操控性。
本文以商用載重貨車為研究目標(biāo),結(jié)合貨車的各項(xiàng)參數(shù),對車架進(jìn)行設(shè)計(jì)。確定了車架總成以及縱梁橫梁的各項(xiàng)參數(shù)。運(yùn)用solidworks軟件做出了車架的三維模型圖。同時(shí)利用ANSYS WORKBENCH有限元分析軟件對車架的四種典型工況做出靜力分析,得到各種工況下的變形情況和應(yīng)力分布情況,同時(shí)對車架進(jìn)行了模態(tài)分析。最后根據(jù)分析結(jié)果對車架做出優(yōu)化建議。
關(guān)鍵詞: 載重貨車;車架;結(jié)構(gòu)設(shè)計(jì);有限元分析
ABSTRACT
The vehicle frame is?the base of?the car,?is one of the most important parts?in the automobile design.?Frame supports the engine clutch, transmission, steering gear, non bearing body and the container all spring quality the important parts, bear and pass it on to all kinds of force and moment.?Therefore, the frame must have enough bending stiffness, also want to have enough strength, to ensure sufficient reliability and life.?At the same time, with now the development of automobile and truck ride comfort, handling performance also continues to increase, so design of the frame should also combine comfort and handling.
In this paper, the commercial truck as the research objective, combined with the parameters of the truck, the frame design. Frame assembly and the longitudinal beam parameters were determined. The 3D model chart of the frame was made by SolidWorks software.. At the same time, the finite element analysis software ANSYS Workbench of the frame of four kinds of typical working conditions to make static analysis, obtained under various conditions of deformation and stress distribution, and the modal analysis of the frame. Finally, according to the results of the analysis of the frame to make optimization recommendations.
Keywords: Truck;?frame;structure design;? finite element analysis
目錄
摘要 I
ABSTRACT II
1 緒論 1
1.1車架總成概述 1
1.2國內(nèi)外研究情況及其發(fā)展 2
2 車架總成設(shè)計(jì) 6
2.1參考車型及其參數(shù) 6
2.2車架類型的選擇 6
2.3車架設(shè)計(jì)的技術(shù)要求 11
2.4車架的輕量化 13
2.5車架的參數(shù)設(shè)計(jì) 13
3 車架的有限元靜力學(xué)分析 19
3.1車架幾何模型的建立 19
3.2車架有限元模型的建立 19
3.3車架的靜力學(xué)分析 21
3.4 基于靜力分析的車架輕量化 35
4 車架的模態(tài)分析 37
4.1車架模態(tài)分析的基本理論 37
4.2車架有限元模態(tài)分析結(jié)果 39
4.3車架外部激勵(lì)分析 43
5 總結(jié)與展望 46
5.1總結(jié) 46
5.2工作展望 46
參考文獻(xiàn) 48
致謝 50
附錄 51
68
1 緒 論
1.1車架總成概述
汽車車架是整個(gè)汽車的基體,是將汽車的主要總成和部件連接成汽車整體的金屬構(gòu)架,對于這種金屬構(gòu)架式車架,生產(chǎn)廠家在生產(chǎn)設(shè)計(jì)時(shí)應(yīng)考慮結(jié)構(gòu)合理,生產(chǎn)工藝規(guī)范,要采取一切切實(shí)可行的措施消除工藝缺陷,保證它在各種復(fù)雜的受力情況下不至于被破壞。
車架作為汽車的承載基體,為貨車、中型及以下的客車、中高級和高級轎車所采用,支撐著發(fā)動(dòng)機(jī)離合器、變速器、轉(zhuǎn)向器、非承載式車身和貨箱等所有簧上質(zhì)量的有關(guān)機(jī)件,承受著傳給它的各種力和力矩。為此,車架應(yīng)有足夠的彎曲剛度,以使裝在其上的有關(guān)機(jī)構(gòu)之間的相對位置在汽車行駛過程中保持不變并使車身的變形最?。卉嚰芤矐?yīng)有足夠的強(qiáng)度,以保證其有足夠的可靠性與壽命,縱梁等主要零件在使用期內(nèi)不應(yīng)有嚴(yán)重變形和開裂。車架剛度不足會(huì)引起振動(dòng)和噪聲,也使汽車的乘坐舒適性、操縱穩(wěn)定性及某些機(jī)件的可靠性下降。
本文只是敘述非承載式車身結(jié)構(gòu)形式中單獨(dú)的車架系統(tǒng)。承載式汽車,前、后懸架裝置,發(fā)動(dòng)機(jī)及變速器等傳動(dòng)系部件施加的作用力均由車架承受,所以,車架總成的剛性、強(qiáng)度及振動(dòng)特性等幾乎完全決定了車輛整體的強(qiáng)度、剛度和振動(dòng)特性。設(shè)計(jì)時(shí)在確保車架總成性能的同時(shí),還應(yīng)對車架性能和匹配性進(jìn)行認(rèn)真的研究。車架結(jié)構(gòu)很多都是用電弧焊焊接而成,容易產(chǎn)生焊接變形。在設(shè)計(jì)方面對精度有要求的部位不得出現(xiàn)集中焊接,或者從部件結(jié)構(gòu)方面下工夫,盡量確保各個(gè)總成的精度。另外,與其他焊接方法相對比,采用電弧焊的話,后端部容易出現(xiàn)比較大的缺口,出現(xiàn)應(yīng)力集中現(xiàn)象。所以,應(yīng)對接頭位置和焊接端部進(jìn)行處理[1]。
車架受力狀態(tài)極為復(fù)雜。汽車靜止時(shí),它在懸架系統(tǒng)的支撐下,承受著汽車各部件及載荷的重力,引起縱梁的彎曲和偏心扭轉(zhuǎn)(局部扭轉(zhuǎn))。如汽車所處的路面不平,車架還將呈現(xiàn)整體扭轉(zhuǎn)。汽車行駛時(shí),載荷和汽車各部件的自身質(zhì)量及其工作載荷(如驅(qū)動(dòng)力、制動(dòng)力和轉(zhuǎn)向力等)將使車架各部件承受著不同方向、不同程度和隨機(jī)變化的動(dòng)載荷,車架的彎曲、偏心扭轉(zhuǎn)和整體扭轉(zhuǎn)將更嚴(yán)重,同時(shí)還會(huì)出現(xiàn)側(cè)彎、菱形傾向,以及各種彎曲和扭轉(zhuǎn)振動(dòng)。同時(shí),有些裝置件還可能使車架產(chǎn)生較大的裝置載荷[2]。
隨著計(jì)算機(jī)技術(shù)的發(fā)展,在產(chǎn)品開發(fā)階段,對車架靜應(yīng)力、剛度、振動(dòng)模態(tài)以至動(dòng)應(yīng)力和碰撞安全等已可進(jìn)行有限元分析,對其輕量化、使用壽命,以及振動(dòng)和噪聲特性也可以做出初步判斷,為縮短產(chǎn)品開發(fā)周期創(chuàng)造了有利條件。
1.2國內(nèi)外研究情況及其發(fā)展
早期汽車所使用的車架,大多都是由籠狀的鋼骨梁柱所構(gòu)成的,也就是在兩支平行的主梁上,以類似階梯的方式加上許多左右相連的副梁制造而成。車體建構(gòu)在車架之上,至于車門、沙板、引擎蓋、行李廂蓋等鈑件,則是另外再包覆于車體之外,因此車體與車架其實(shí)是屬于兩個(gè)獨(dú)立的構(gòu)造。這種設(shè)計(jì)的最大好處,在于輕量化與剛性得以同時(shí)兼顧。由于鋼骨設(shè)計(jì)的車架必須通過許多接點(diǎn)來連結(jié)主梁和副梁,加之籠狀構(gòu)造也無法騰出較大的空間,因此除了制造上比較復(fù)雜、不利于大量生產(chǎn)。隨后單體結(jié)構(gòu)的車架在車壇上成為主流,籠狀的鋼骨車架也逐漸改由這種將車體與車架合二為一的單體車架所取代,這種單體車架一般以“底盤”稱之[3]。??
關(guān)于單體車架,簡單的說就是將引擎室、車廂以及行李廂三個(gè)空間合而為一,這樣的好處除了便于大量生產(chǎn),模組化的運(yùn)用也是其中主要的考慮。通過采取模組化生產(chǎn)的共用策略,車廠可以將同一具車架分別使用在數(shù)種不同的車款上,這樣也可節(jié)省不少研發(fā)經(jīng)費(fèi)。?
除了有利于共用,車體車架也可以通過材料的不同來發(fā)揮輕量化的特性,鋁合金是80年代末期相當(dāng)熱門的一種工業(yè)材料,雖然重量比鐵輕,但是強(qiáng)度卻較差,因此如果要用鋁合金制成單體車架,雖然在重量上比起鐵制車架更占優(yōu)勢,但是強(qiáng)度卻無法達(dá)到和鐵制車架同樣的水準(zhǔn)。除非增加更多的鋁合金材料,利用更多的用量來彌補(bǔ)強(qiáng)度上的不足。不過這樣一來,重量必然會(huì)相對增加,而原本出于輕量化考量而采用鋁合金材料的動(dòng)機(jī),當(dāng)然也就失去了意義[4]。也正因?yàn)檫@個(gè)原因,鋁合金車架在車壇上并未成為主流,少數(shù)高性能跑車或是使用了強(qiáng)度更高的碳纖維,或是用碳纖維結(jié)合蜂巢狀?yuàn)A層鋁合金的復(fù)合材料取代了鋁合金。但是要用碳纖維制成單體車架,在制作上相當(dāng)復(fù)雜且費(fèi)時(shí),成本也相對更高,所以至今仍無法普及到一般市售車上,而僅有少數(shù)售價(jià)高昂的跑車使用,這些是不可能用在載重貨車上的。?盡管鋁合金車架鮮有車廠使用,不過用鋼鐵車架搭配鋁合金鈑件的方式,近年來卻受到不少車廠的重視,這樣的結(jié)構(gòu)不僅可以保留車架本身的強(qiáng)度,同時(shí)也可以通過鈑件的鋁合金化來取得輕量化效果,在研發(fā)成本上自然也不像碳纖維制的單體車架那樣昂貴。?
載貨汽車行駛路況復(fù)雜車架在各種載荷作用下,將發(fā)生彎曲、偏心扭轉(zhuǎn)和整體扭轉(zhuǎn)等變形。目前國內(nèi)商用車車架設(shè)計(jì)開始從原有的單純經(jīng)驗(yàn)設(shè)計(jì)進(jìn)入優(yōu)化設(shè)計(jì)階段,主要特點(diǎn)是以有限元計(jì)算分析等手段輔助設(shè)計(jì),在零件試制之前對產(chǎn)品就有了初步判斷,可以提前解決相當(dāng)數(shù)量的設(shè)計(jì)問題,但目前有限元分析還只局限在強(qiáng)度計(jì)算方面,壽命計(jì)算做的較少再有一點(diǎn)就是目前國內(nèi)車架的開發(fā)很少經(jīng)過臺(tái)架強(qiáng)度和壽命試驗(yàn),而目前國內(nèi)各汽車生產(chǎn)廠車架臺(tái)架試驗(yàn)所需的硬件應(yīng)該沒有問題,主要問題缺少參數(shù)輸入方面的積累[5]。另外,由于目前國內(nèi)還無法杜絕超載現(xiàn)象的存在,所以我們的車架設(shè)計(jì)偏于保守。相反,國外商用車車架開發(fā)過程中有限元分析應(yīng)用比較廣泛,而且臺(tái)架試驗(yàn)應(yīng)用也被大量采用,有比較成熟的車架臺(tái)架試驗(yàn)經(jīng)驗(yàn),比如奧地利斯太爾公司的臺(tái)架試驗(yàn)現(xiàn)在已經(jīng)非常成熟,車架總成在通過斯太爾的 250 小時(shí)脈沖臺(tái)架試驗(yàn)后只需要進(jìn)行 300 小時(shí)的場地試驗(yàn),檢驗(yàn)連接件的可靠性即可,通過這兩項(xiàng)試驗(yàn),車架的使用壽命可到 100 萬公里,目前 BENZ,MAN 等公司仍利用斯太爾的試驗(yàn)臺(tái)進(jìn)行車架臺(tái)架試驗(yàn),它們的車架如果不經(jīng)過脈沖試驗(yàn),整車不投產(chǎn)[6]。從材料的使用情況看,目前在節(jié)油、輕量化的壓力下,國內(nèi)外重型商用車車架普遍采用了高強(qiáng)度鋼板,500Mpa/S2 的鋼板已經(jīng)廣泛應(yīng)用 從成型工藝方面看,傳統(tǒng)的縱梁制造工藝采用大型沖壓設(shè)備及大型模具沖壓成型,一次性生產(chǎn)準(zhǔn)備投入大,周期長,柔性化差,精度不高,很難適應(yīng)產(chǎn)品和市場的變化。而且,隨著縱梁所用材料強(qiáng)度等級的不斷提高,采用傳統(tǒng)制造工藝所需的沖壓設(shè)備會(huì)越來越大,對材料的成型性能要求也高,很難適應(yīng)發(fā)展的需要。所以目前普遍采用的是縱梁滾壓成型制造工藝,其特點(diǎn)是:柔性化好,精度高,一次性生產(chǎn)準(zhǔn)備投入小[7]。
歐美從90年代開始逐漸提高了撞擊事故的安全防護(hù)標(biāo)準(zhǔn),這也是凸現(xiàn)出車架剛性重要的另一原因[8]。許多車廠為了在撞擊事故發(fā)生時(shí)能夠確保車內(nèi)乘員的安全,惟有針對車架以及車體進(jìn)行全面強(qiáng)化,這也使得除了車架以外的強(qiáng)度有所改善,包括鈑件厚度的改變以及各種輔助梁的增設(shè)也成為各廠慣用的手法。不過在這樣的情況下,伴隨而來的是車重相對增加,這也正是歐美日許多市售車的重量比起10年前、20年前增加不少的主要原因。?關(guān)于剛性的確保,大多數(shù)車廠在新車的設(shè)計(jì)階段,都是利用電腦計(jì)算出車架的剛性需求,并以此作為設(shè)計(jì)依據(jù)。有些車廠在用電腦完成設(shè)計(jì)雛形后,還會(huì)再由專業(yè)的試車人員進(jìn)行實(shí)際測試。
中國第一汽車集團(tuán)凌源汽車制造有限公司汽車車架U型槽合數(shù)控沖孔生產(chǎn)線競標(biāo)成功。?汽車車架U型槽合數(shù)控沖孔生產(chǎn)線是我公司繼兩年前成功設(shè)計(jì)制造了合肥江淮汽車廠汽車縱梁數(shù)控平板沖孔生產(chǎn)線的基礎(chǔ)上,在汽車縱梁數(shù)控沖孔方面的又一標(biāo)志性成果,填補(bǔ)了國內(nèi)設(shè)計(jì)制造汽車車架U型槽合數(shù)控沖孔生產(chǎn)線的空白。汽車車架U型槽合數(shù)控沖孔生產(chǎn)線的設(shè)計(jì)制造成功,在汽車制造行業(yè)具有劃時(shí)代的意義,標(biāo)志著中國在汽車車架數(shù)控沖孔加工的生產(chǎn)設(shè)備方面達(dá)到了國際先進(jìn)水平,降低了汽車制造行業(yè)購置汽車車架數(shù)控沖孔生產(chǎn)線的巨大費(fèi)用,積極推動(dòng)了中國汽車制造業(yè)的飛速發(fā)展,為中國汽車制造業(yè)早日與國際接軌奠定了基礎(chǔ)。?
目前我國的車架企業(yè)基本擁有剪切、沖壓、焊接、鉚接、油漆、機(jī)加工六大工藝能力和完善的檢測手段、研究設(shè)計(jì)中心,具有16噸至3000噸的冷沖壓能力,具備了開發(fā)、設(shè)計(jì)、生產(chǎn)各種類型車架。
2 車架總成設(shè)計(jì)
2.1參考車型及其參數(shù)
參考車型:奧鈴CTX BJ1151VKPFG-S
詳細(xì)參數(shù):
發(fā)動(dòng)機(jī)型號:康明斯ISF3.8S3154 發(fā)動(dòng)機(jī)功率:115kw
最大扭矩:500N.M 最大馬力:154馬力
發(fā)動(dòng)機(jī)排量:3760 ML 發(fā)動(dòng)機(jī)類型:柴油發(fā)動(dòng)機(jī)
外形尺寸(長×寬×高):8445×2270×2500 mm
貨箱欄板內(nèi)尺寸:6200×2100×550 mm
總質(zhì)量:14785 Kg 整備質(zhì)量:4600Kg
額定載質(zhì)量:9990 Kg 接近角/離去角:23/16
前懸/后懸:1195/2250mm 軸距:4700 mm
軸荷:5280/9505N 最高車速:95 km/h
前輪距:1710 mm 后輪距:1680 mm
底盤型號:BJ1151VKPFG-S 軸數(shù):2
彈簧片數(shù):8/10+10
輪胎數(shù):6 輪胎規(guī)格:8.25-20
2.2車架類型的選擇
車架的結(jié)構(gòu)形式可以分為邊梁式、中梁式(或稱脊骨式)和綜合式。而在有些客車和轎車上車身和車架制成一體,這樣的車身稱為“半承載式車身”,有的被加強(qiáng)了車身則能完全起到車架的作用,這樣的車身稱為“承載式車身”,不另設(shè)車架。隨著節(jié)能技術(shù)的發(fā)展,為了減輕自重,越來越多的轎車都采用了承載式車身[9]。下邊先分別列舉下各車架的特點(diǎn)。
(1)邊梁式車架的構(gòu)造
這種車架由兩根縱梁及連接兩根縱梁的若干根橫梁組成,用鉚接和焊接的方法將縱橫梁連接成堅(jiān)固的剛性構(gòu)架。縱梁通常用低合金鋼板沖壓而成,斷面一般為槽型,z星或箱型斷面。橫梁用來連接縱梁,保證車架的抗扭剛度和承載能力,而且還用來支撐汽車上的主要部件。 邊梁式車架能給改裝變型車提供一個(gè)方便的安裝骨架,因而在載重汽車和特種車上得到廣泛用。其彎曲剛度較大,而當(dāng)承受扭矩時(shí),各部分同時(shí)產(chǎn)生彎曲和扭轉(zhuǎn)。其優(yōu)點(diǎn)是便于安裝車身、車箱和布置其他總成,易于汽車的改裝和變形,因此被廣泛地用在載貨汽車、越野汽車、特種汽車和用貨車底盤改裝而成的大客車上。在中、輕型客車上也有所采用,轎車則較少采用。
用于載貨汽車的邊梁式車架(圖2.1),由兩根相互平行但開口朝內(nèi)、沖壓制成的槽型縱梁及一些沖壓制成的開口槽型橫梁組合而成。通常,縱梁的上表面沿全長不變或局部降低,而兩端的下表面則可以根據(jù)應(yīng)力情況相應(yīng)地縮小。車架寬度多為全長等寬。
邊梁式車架
圖 2.1 邊梁式車架
(2)X梁型車架
X型車架(圖2.2)是邊梁式車架的改進(jìn),這種車架由兩根縱梁及X型橫梁組成,實(shí)際上是邊梁式車架的改進(jìn),有一定的抗扭剛度,X橫梁能將扭矩轉(zhuǎn)變?yōu)閺澗?,對短而寬的車架,這種效果最明顯。車架中部為位于汽車縱向?qū)ΨQ平面上的一根矩形斷面的空心脊梁,其前后端焊以叉形梁。前端的叉形梁用于支撐動(dòng)力、傳動(dòng)總成,而后端則用于安裝后橋。傳動(dòng)軸經(jīng)中部管梁通向后方。中部管梁的扭轉(zhuǎn)剛度大。前后叉形邊梁由一些橫梁相連,后者還用于加強(qiáng)前、后懸架的支撐。管梁部分位于后座乘客的腳下位置且在車寬的中間,因此不妨礙在其兩側(cè)的車身地板的降低,但地板中間會(huì)有較大的縱向鼓包。門檻的寬度不大,雖然從被動(dòng)安全性考慮,要求門檻有足夠的強(qiáng)度和剛度。轎車要是使用邊梁式車架,為了降低地板高度,可局部地減少縱梁的斷面高度并相應(yīng)地加大其寬度,但這使縱梁的制造工藝復(fù)雜化且其車身地板仍比采用其他車架時(shí)為高,當(dāng)然地板上的傳動(dòng)軸通道鼓包也就不大了。所以X型車架較多使用于轎車。
圖 2.2 X梁式車架
(3)周邊式車架
周邊式車架,這種車架是從邊梁式車架派生出來的,前后兩端縱梁變窄,中部縱梁加寬,前端寬度取決于前輪最大轉(zhuǎn)角,后端寬度取決于后輪距,中部寬度取決于車身門檻梁的內(nèi)壁寬,前部和中部以及后部和中部的連接處用緩沖臂或抗扭盒相連,具有一定的彈性,能緩和不平路面的沖擊。其結(jié)構(gòu)形狀容許緩沖臂有一定的彈性變形,可以吸收來自不平路面的沖擊和降低車內(nèi)噪聲。此外,車架中部加寬既有利于提高汽車的橫向穩(wěn)定性,又可以減短了車架縱梁外側(cè)裝置件的懸伸長度。在前后縱梁處向上彎曲以讓出前后獨(dú)立懸架或非斷開式后橋的運(yùn)動(dòng)空間。采用這種車架時(shí)車身地板上的傳動(dòng)軸通道所形成的鼓包不大,但門檻較寬。這種車架結(jié)構(gòu)復(fù)雜,一般在中、高級轎車上采用。
(4)中梁式車架(脊骨式車架)
其結(jié)構(gòu)只有一根位于中央而貫穿汽車全長的縱梁,亦稱為脊骨式車架(圖2.3)。中梁的斷面可做成管形、槽形或箱形。中梁的前端做成伸出支架,用以固定發(fā)動(dòng)機(jī),而主減速器殼通常固定在中梁的尾端,形成斷開式后驅(qū)動(dòng)橋。中梁上的懸伸托架用以支承汽車車身和安裝其它機(jī)件。若中梁是管形的,傳動(dòng)軸可在管內(nèi)穿過。優(yōu)點(diǎn)是有較好的抗扭轉(zhuǎn)剛度和較大的前輪轉(zhuǎn)向角,在結(jié)構(gòu)上容許車乾有較大的跳動(dòng)空間,便于裝用獨(dú)立懸架,從而提高了汽車的越野性;與同噸位的載貨汽車相比,其車架輕,整車質(zhì)量小,同時(shí)質(zhì)心也較低,故行駛穩(wěn)定性好;車架的強(qiáng)度和剛度較大;脊梁還能起封閉傳動(dòng)軸的防塵罩作用。缺點(diǎn)是制造工藝復(fù)雜,精度要求高,總成安裝困難,維護(hù)修理也不方便,故目前應(yīng)用較少。
(5)綜合式車架
綜合式車架(圖2.4)是由邊梁式和中梁式車架聯(lián)合構(gòu)成的。車架的前段或后段是邊梁式結(jié)構(gòu),用以安裝發(fā)動(dòng)機(jī)或后驅(qū)動(dòng)橋。而車架的另一段是中梁式結(jié)構(gòu)的支架可以固定車身。傳動(dòng)軸從中梁的中間穿過,使之密封防塵。其中部的抗扭剛度合適,但中部地板凸包較大,且制造工藝較復(fù)雜。此種
圖 2.3中梁式車架
結(jié)構(gòu)一般在轎車上使用。車架承受著全車的大部分重量,在汽車行駛時(shí),它承受來自裝配在其上的各部件傳來的力及其相應(yīng)的力矩的作用。當(dāng)汽車行駛在崎嶇不平的道路上時(shí),車架在載荷作用下會(huì)產(chǎn)生扭轉(zhuǎn)變形,使安裝在其上的各部件相互位置發(fā)生變化。當(dāng)車輪受到?jīng)_擊時(shí),車架也會(huì)相應(yīng)受到?jīng)_擊載荷。因而要求車架具有足夠的強(qiáng)度,合適的剛度,同時(shí)盡量減輕重量。在良好路面行駛的汽車,車架應(yīng)布置得離地面近一些,使汽車重心降低,有利于汽車穩(wěn)定行駛,車架的形狀尺寸還應(yīng)保證前輪轉(zhuǎn)向要求的空間[10]。
由于設(shè)計(jì)的是載貨汽車車架,根據(jù)其特點(diǎn)選用邊梁式車架??v梁上、下表面為平直,斷面呈槽形,其結(jié)構(gòu)簡單,工作可靠,不僅能降低工人工作強(qiáng)度,而且其造價(jià)低廉,有良好的經(jīng)濟(jì)性,將廣泛地用于各種載貨汽車、客車上。
圖 2.4 綜合式車架
2.3車架設(shè)計(jì)的技術(shù)要求
為了使車架符合上述功用,通常對設(shè)計(jì)的車架必須要有足夠的強(qiáng)度。以保證在各種復(fù)雜受力的使用情況下車架不受破壞。要求有足夠的疲勞強(qiáng)度,保證在汽車大修里程內(nèi),車架不致有嚴(yán)重的疲勞損傷。
縱梁受力極為復(fù)雜,設(shè)計(jì)時(shí)不僅應(yīng)注意各種應(yīng)力,改善其分布情況,還應(yīng)該注意使各種應(yīng)力峰值不出現(xiàn)在同一部位上。例如,縱梁中部彎曲應(yīng)力較大,則應(yīng)注意降低其扭轉(zhuǎn)應(yīng)力,減少應(yīng)力集中并避免失穩(wěn)。而在前、后端,則應(yīng)著重控制懸架系統(tǒng)引起的局部扭轉(zhuǎn)[11]。
提高縱梁強(qiáng)度常用的措施如下:
(1)提高彎曲強(qiáng)度
選定較大的斷面尺寸和合理的斷面形狀(槽形梁斷面高寬比一般為3:1左右);
(2)提高局部扭轉(zhuǎn)剛度
注意偏心載荷的布置,使相近的幾個(gè)偏心載荷盡量接近縱梁斷面的彎曲中心,并使合成量較??;
在偏心載荷較大處設(shè)置橫梁,并根據(jù)載荷大小及分散情況確定連接強(qiáng)度和寬度;
將懸置點(diǎn)分布在橫梁的彎曲中心上;當(dāng)偏心載荷較大并偏離橫梁較遠(yuǎn)處時(shí)候,可以采用K形梁,或者將該段縱梁形成封閉斷面;偏心載荷較大且比較分散時(shí)候,應(yīng)該采用封閉斷面梁,橫梁間距也應(yīng)縮??;
選用較大的斷面;
限制制造扭曲度,減少裝配預(yù)應(yīng)力。
(3)提高整體扭轉(zhuǎn)強(qiáng)度
不使縱梁斷面過大;
翼緣連接的橫梁不宜相距太近。
(4)減少應(yīng)力集中及疲勞敏感
盡可能減少翼緣上的孔(特別是高應(yīng)力區(qū)),嚴(yán)禁在翼緣上布置大孔;
注意外形的變化,避免出現(xiàn)波紋區(qū)或者受嚴(yán)重變?。?
注意加強(qiáng)端部的形狀和連接,避免剛度突變;
避免在槽形梁的翼緣邊緣處施焊,尤其畏忌短焊縫和“點(diǎn)”焊。
(5)減少失穩(wěn)
受壓翼緣寬度和厚度的比值不宜過大(常在12左右);
在容易出現(xiàn)波紋處限制其平整度。
(6)局部強(qiáng)度加強(qiáng)
采用較大的板厚;加大支架緊固面尺寸,增多緊固數(shù)量,并盡量使力作用點(diǎn)接近腹板的上、下側(cè)面。
2.4車架的輕量化
由于車架較重,對于鋼板的消耗量相當(dāng)大。因此,車架應(yīng)按等強(qiáng)度的原則進(jìn)行設(shè)計(jì),以減輕汽車的自重和降低材料的消耗量。在保證強(qiáng)度的條件下,盡量減輕車架的質(zhì)量。通常要求車架的質(zhì)量應(yīng)小于整車整備質(zhì)量的10%。
本設(shè)計(jì)主要對車架縱梁進(jìn)行簡化的彎曲強(qiáng)度計(jì)算,使車架縱梁具有足夠的強(qiáng)度,以此來確定車架的斷面尺寸。另外,從生產(chǎn)汽車的經(jīng)濟(jì)性考慮的話,也應(yīng)盡量減輕整車的質(zhì)量。從生產(chǎn)工藝性考慮,橫縱梁采用簡便可靠的連接方式,不僅能降低工人的工作強(qiáng)度,還能增強(qiáng)車架的強(qiáng)度[12]。
2.5車架的參數(shù)設(shè)計(jì)
2.5.1車架長度確定
對于載重貨車而言,車架的長度一般可認(rèn)為是整車的長度減去車輛最前端到車架最前端的距離,對于本車型而言,整車定義長度為 8445mm。車輛的最前端在保險(xiǎn)杠上。保險(xiǎn)杠最前端到車架前橫梁最前端的距離為 45mm,所以車架總長可確定為 8400mm,車架前懸為 1150mm,軸距為4700mm,車架后懸為 2550mm。
2.5.2車架寬度確定
車架的寬度是左、右縱梁腹板外側(cè)面之間的寬度。車架前部寬度的最小值取決于發(fā)動(dòng)機(jī)的外廓寬度,其最大值受到前輪最大轉(zhuǎn)角的限制。車架后部寬度的最大值主要是根據(jù)車架外側(cè)的輪胎和鋼板彈簧片寬等尺寸確定。為了提高汽車的橫向穩(wěn)定性,希望增大車架的寬度。
通常,車架的寬度根據(jù)汽車總體布置的參數(shù)來確定,整車寬度不得超過2.5m,故往往很難同時(shí)滿足上述要求。為了解決總體布置與加寬車架的矛盾,車架的寬度設(shè)計(jì)可采取以下措施[13]:
(1)將車架做成前窄后寬
這種結(jié)構(gòu)可以解決前輪轉(zhuǎn)向所需的空間與車架總寬之間的矛盾。此結(jié)構(gòu)適用于輕型汽車、微型汽車和轎車。
(2)將車架做成前寬后窄
對于重型載貨汽車,其后軸的負(fù)荷大,輪胎的尺寸加大,后鋼板彈簧片寬增加,同時(shí)為了安裝外型尺寸大的發(fā)動(dòng)機(jī),常需減小前輪轉(zhuǎn)向角,以便使汽車的總寬在公路標(biāo)準(zhǔn)的2.5m內(nèi),因此車架不得不采用前寬后窄的型式。
(3) 將車架做成前后等寬
在整車布置允許的條件下,應(yīng)該盡量采用前后等寬式車架,因?yàn)樵摻Y(jié)構(gòu)車架的制造工藝簡單,不存在不等寬車架在皺紋區(qū)易產(chǎn)生應(yīng)力集中的缺點(diǎn),目前絕大多數(shù)中等載重量的汽車采用了前后等寬式車架。
根據(jù)本設(shè)計(jì)的要求,關(guān)于輕型載重貨車車架結(jié)構(gòu)設(shè)計(jì),其載重設(shè)為10t,簡化制造工藝,最好車架前后等寬。為了便于實(shí)行產(chǎn)品的三化,不少國家對車架的寬度制定了標(biāo)準(zhǔn)。我國汽車專業(yè)標(biāo)準(zhǔn)[18](汽132-59載重汽車車架寬度標(biāo)準(zhǔn))規(guī)定“車架寬度標(biāo)準(zhǔn)為865?±5毫米”。根據(jù)汽車設(shè)計(jì)取車架寬860mm。
2.5.3車架縱梁結(jié)構(gòu)設(shè)計(jì)
車架縱梁的斷面高度決定了貨物質(zhì)心的高度,降低縱梁上翼面的離地高度不僅能降低駕駛室等裝置件的離地高度,也能降低車箱底板的離地高度,但降低車架縱梁斷面高度會(huì)嚴(yán)重的降低縱梁的抗彎能力,所以縱梁設(shè)計(jì)時(shí)這兩方面要綜合考慮。重型貨車通常多采用槽形斷面縱梁,這是因?yàn)榭v梁主要承受彎曲載荷和便于裝配的緣故[14]。盡管槽形斷面的抗扭剛度遠(yuǎn)遠(yuǎn)不如閉口斷面 ,但由于在重型汽車上,許多裝置件(如汽油箱、儲(chǔ)氣筒、排氣管)的支架都是裝在縱梁上,若是將縱梁做成封閉斷面,則這些支架的安裝就會(huì)困難很多[16]。該載重貨車車架縱梁采用槽型梁,前后等高上下翼面平直的架構(gòu)。統(tǒng)計(jì)對比同類車型,車架縱梁斷面高度初步判斷應(yīng)在 300mm-320mm 之間,根據(jù)已有生產(chǎn)沖壓模具的條件,同時(shí)考慮輕量化問題縱梁梁斷面高度確定為 300mm[17],根據(jù)整車布置要求(特別是后簧平衡懸架支架限制,縱梁翼面寬 90mm)和車架抗彎、抗扭的需要,確定縱梁的翼面寬為 90mm;根據(jù)沖壓能力和使用條件分析,縱梁板料厚度確定為 8mm??v梁的翼面橫截面如下圖2.5所示。
圖2.5 縱梁斷面尺寸
2.5.4車架橫梁結(jié)構(gòu)設(shè)計(jì)
車架橫梁將左、右縱梁連接在一起,構(gòu)成一個(gè)框架,使車架有足夠的抗彎剛度。汽車主要總成通過橫梁來支承。載貨汽車的橫梁一般有多根橫梁組成,其結(jié)構(gòu)和用途不一樣[19]。
前橫梁
通常用來支承水箱。當(dāng)發(fā)動(dòng)機(jī)前支點(diǎn)安排在左右縱梁上時(shí),可用較小槽型和Z型斷面橫梁。對于前部采用獨(dú)立懸架的轎車,為了改善汽車的視野,希望汽車頭部高度降低,固需要將水箱安裝得低些,可將前橫梁做成寬而下凹的形狀。當(dāng)發(fā)動(dòng)機(jī)前支點(diǎn)和水箱相距很近時(shí),前橫梁常用來支承水箱和發(fā)動(dòng)機(jī)前端,此時(shí)需采用斷面大的橫梁。中橫梁通常用來作傳動(dòng)軸的中間支承。為了保證傳動(dòng)軸有足夠的跳動(dòng)空間,將其結(jié)構(gòu)做成上拱形。在后鋼板彈簧前、后支架附近所受到的力或轉(zhuǎn)矩大,則要設(shè)置一根抗扭剛度大、連接寬度大的橫梁。后橫梁采用中橫梁形式。
本設(shè)計(jì)課題是關(guān)于載重貨車車架結(jié)構(gòu)設(shè)計(jì),所以采用開口斷面比較合適。本次設(shè)計(jì)一共采用大小共6根橫梁,各根橫梁的結(jié)構(gòu)及用途如下:
第一根橫梁斷面形狀為槽型,用來支撐水箱,其中間設(shè)有多個(gè)圓形孔,目的是讓空氣可以流到發(fā)動(dòng)機(jī)底部,也有助于發(fā)動(dòng)機(jī)的散熱。
第二根橫梁為發(fā)動(dòng)機(jī)托架,為防止其與前軸發(fā)生碰撞幾干涉,故將其安排放在發(fā)動(dòng)機(jī)前端,其形狀就是近似元寶的元寶梁,此種形狀有較好的剛度。
第三根橫梁用作傳動(dòng)軸的支承,其斷面形狀為槽形,為了保證傳動(dòng)軸有足夠的跳動(dòng)空間和安裝空間,將其結(jié)構(gòu)做成上拱形。
第四、五根橫梁分別在后鋼板彈簧前、后支架附近,它們所受到的力或轉(zhuǎn)矩都很大。將其設(shè)計(jì)成K型。它們的斷面形狀也是采用槽形。
第六橫梁為后橫梁,其將左、右縱梁連接在一起,構(gòu)成一個(gè)框架,使車架有足夠的抗彎剛度。其斷面形狀為槽形。
2.5.6橫梁縱梁連接方式
縱梁和橫梁的連接方式對車架的受力有很大的影響。大致可分有以下幾種:
(1) 橫梁和縱梁的腹板相連接
這種連接型式制造工藝簡單,連接剛度較差,但不會(huì)使縱梁出現(xiàn)大的應(yīng)力,一般車架的中部橫梁采用此種連接方式。
(2) 橫梁同時(shí)和縱梁的腹板及任一翼緣(上或下)相連接
這種連接方式制造工藝不很復(fù)雜,連接剛度增強(qiáng),故得到廣泛應(yīng)用。但后鋼板彈簧托架上的力會(huì)通過縱梁傳給后鋼板彈簧的前橫梁,使其承受較大載荷。因此在設(shè)計(jì)鋼板彈簧托架時(shí)應(yīng)盡可能減少懸架伸長度,使載荷作用點(diǎn)靠近縱梁彎曲中心。當(dāng)偏心載荷較大時(shí),可將該處縱梁做成局部閉口斷面;也可將橫梁穿過縱梁向外延伸,將載荷直接傳給橫梁。
(3) 橫梁同時(shí)和上、下翼緣相連接
這種連接形式具有剛性較好的加強(qiáng)角撐,可產(chǎn)生良好的斜支撐作用,使整個(gè)車架的剛度增加,且其翼緣外邊不致因受壓而產(chǎn)生翹曲。車架兩端的橫梁常采用這種形式和縱梁相連接。但此種連接方式制造復(fù)雜,當(dāng)轉(zhuǎn)矩過大時(shí),縱梁翼緣上會(huì)出現(xiàn)應(yīng)力過大的現(xiàn)象,這是由于縱梁截面不能自由翹曲所致。
橫梁和縱梁的固定方法可分為鉚接、焊接和螺栓連接等方式。大多數(shù)車架用搭鐵板通過鉚釘連接。這種方法成本低,適合大批量生產(chǎn),其剛度與鉚釘?shù)臄?shù)目及其分布有關(guān)。焊接能使其連接牢固,不致產(chǎn)生松動(dòng),能保證有大的剛度。但焊接容易變形并產(chǎn)生較大的內(nèi)應(yīng)力,故要求焊接質(zhì)量要高,主要在小批量生產(chǎn)或修理時(shí)采用。
螺栓連接主要在某些為了適用于各種特殊使用條件的汽車車架上采用,以使裝在汽車車架上的某些部件易于拆卸或互換。但此種連接方式在長期使用時(shí),容易松動(dòng),甚至發(fā)生嚴(yán)重事故。一般汽車車架橫梁與縱梁的固定不采用此種方法。
鉚接時(shí)緊固件的尺寸和數(shù)量要和橫梁大小相適應(yīng),鉚釘分布不要太近。當(dāng)利用連接板的翻邊緊固時(shí),應(yīng)加大連接板的寬度和厚度,緊固孔應(yīng)盡可能靠近翻邊處,以防連接損壞[20]。
本設(shè)計(jì)方案中,橫梁與縱梁的連接形式使用鉚接加螺栓連接,連接在腹板上。連接方式如圖2.6所示
圖 2.6 縱梁橫梁連接方式示意圖
3 車架的有限元靜力學(xué)分析
3.1車架幾何模型的建立
目前三維模型的繪圖軟件很多,常用的有UG、solidworks、Pro.E、CATRA等等。也可以在workbench中直接繪制三維模型圖。本次設(shè)計(jì)采用solidworks繪圖軟件根據(jù)第二章的設(shè)計(jì)數(shù)據(jù)繪制出車架的三維模型圖(圖3.1)。
圖3.1 車架三維模型圖
3.2車架有限元模型的建立
3.2.1將車架模型導(dǎo)入到workbench
在solidworks軟件中將車架的三維模型完成之后,將模型轉(zhuǎn)化為Workbench 軟件所識(shí)別的*.x-t格式,在SolidWorks 軟件中可以通過文件另存為實(shí)現(xiàn)。啟動(dòng)Workbench 軟件后,通過import 選項(xiàng)導(dǎo)入車架的三維幾何模型*.x-t文件。導(dǎo)入到Workbench 軟件后生成的車架有限元模型圖。
3.2.2設(shè)置材料參數(shù)
本次設(shè)計(jì)整體結(jié)構(gòu)采用B500L鋼[21],物理屬性如表3.1 所示
表3.1 B500L鋼材料力學(xué)性能
材料牌號
密度[kg/m3]
泊松比
彈性模量[MPa]
屈服強(qiáng)度[MPa]
抗拉極限強(qiáng)[MPa]
B500L鋼
7800
0.3
2.1E5
320
500
3.2.3有限元網(wǎng)格化分
有限元分析的基本思想就是把連續(xù)體劃分為離散的模型,劃分網(wǎng)格的目的是把連續(xù)體分解成可得到精確解的適當(dāng)數(shù)量的單元。本論文所使用的車架幾何模型各零部件之間沒有相對運(yùn)動(dòng),所以全部使用綁定接觸處理。
對于三維幾何來說,ANSYS Mesh 有Automatic(自動(dòng)網(wǎng)格劃分)、Tetrahedrons(四面體網(wǎng)格劃分)、Hex Dominant(六面體主導(dǎo)網(wǎng)格劃分),本論文采用Tetrahedrons 中的Patch Conforming 法,它是可以快速地、自動(dòng)地生成網(wǎng)格,并適合于復(fù)雜幾何體。四面體網(wǎng)格具有等向細(xì)化的特點(diǎn),為捕捉一個(gè)方向的梯度,網(wǎng)格在三個(gè)方向細(xì)化,會(huì)導(dǎo)致網(wǎng)格數(shù)量迅速上升。選擇單元尺寸為20mm,這樣可以保證單元質(zhì)量和連接孔周的單元數(shù)目適當(dāng)。車架有限元?jiǎng)澐志W(wǎng)格后如圖3.2 所示。節(jié)點(diǎn)數(shù)為407862個(gè),單元網(wǎng)格數(shù)為202792 個(gè)。
圖3.2 車架的有限元網(wǎng)格化分
3.3車架的靜力學(xué)分析
要對車架進(jìn)行靜力學(xué)分析,首先應(yīng)該清楚了解的是車輛在行駛時(shí)車架所要承受的各種不同的力。如果車架在某方面的韌性不佳,就算有再好的懸掛系統(tǒng),也無法達(dá)到良好的操控表現(xiàn)。而車架在實(shí)際環(huán)境下要主要面對以下4種典型工況[22~24]。
(1)負(fù)載彎曲
從字面上就可以十分容易的理解這個(gè)壓力,部分汽車的非懸掛重量,是由車架承受的,通過輪軸傳到地面。而這個(gè)壓力,主要會(huì)集中在軸距的中心點(diǎn)。因此車架底部的縱梁和橫梁,一般都要求較強(qiáng)的剛度。
(2)非水平扭動(dòng)
當(dāng)前后對角車輪遇到道路上的不平而滾動(dòng),車架的梁柱便要承受這個(gè)縱向扭曲壓力,情況就好像要你將一塊塑料片扭曲成螺旋形一樣。 (3)橫向彎曲
所謂橫向彎曲,就是汽車在入彎時(shí)重量的慣性(即離心力)會(huì)使車身產(chǎn)生向彎外甩的傾向,而輪胎的抓著力會(huì)和路面形成反作用力,兩股相對的壓力將車架橫向扭曲。
(4)緊急制動(dòng)
當(dāng)汽車滿載在路面上勻速行駛突然遇到緊急狀況,緊急制動(dòng)時(shí),受慣性載荷的作用,車架彎曲變形。
3.3.1靜止負(fù)載彎曲
滿載彎曲工況是模擬汽車在滿載狀態(tài)下,四輪著地在良好路面上勻速行駛時(shí)車架對其所承受的重量的響應(yīng),滿載狀態(tài)也是載重貨車的一種極限工況,只要該工況下車架達(dá)到所要的設(shè)計(jì)標(biāo)準(zhǔn),在正常工況下,該車架也必然會(huì)符合標(biāo)準(zhǔn)。
約束條件:對貨車主要部件質(zhì)量做一個(gè)簡化處理如表3.2,然后集中加載在車架。
表3.2 車架載荷分布
總成
質(zhì)量(kg)
駕駛室
800
發(fā)動(dòng)機(jī)
500
變速箱
500
油箱(滿載)
250
其余總成簡化
2000
在建立車架有限元模型時(shí),需將作用在車架上的外載荷簡化為等效載荷加到車架上。對于車身的自重及車架上的各總成,就將它們簡化為集中力直接作用在車架上。而載重汽車的載荷(承載重量)是通過貨箱傳給車架的,汽車貨箱主要由貨箱底板、貨箱橫梁和貨箱縱梁組成。貨箱的縱梁放在車架縱梁的上翼面上,兩者是通過若干個(gè)U形螺栓聯(lián)結(jié)在一起的,以往的車架有限元計(jì)算中,常常不考慮貨箱的剛度對車架剛度與強(qiáng)度的貢獻(xiàn),而一概將貨箱上的載荷以集中力或均布力形式全部直接加到車架上,這種簡化的計(jì)算結(jié)果表明車架應(yīng)力的計(jì)算值一般比實(shí)驗(yàn)值大,特別在與貨箱相連的車架中后部應(yīng)力計(jì)算值往往比實(shí)驗(yàn)值大幾倍。事實(shí)上貨箱和車架之間的作用力是以集中力形式傳遞的,但并不是完全傳遞,而是與貨箱的剛度有關(guān),若貨箱與車架是鋼一鋼結(jié)構(gòu)連接(貨箱縱梁為鋼質(zhì)材料),考慮到貨箱的剛度對車架強(qiáng)度的影響,則總載荷由車架和貨箱共同承擔(dān),若貨箱與車架是木一一鋼結(jié)構(gòu)連接,由于貨箱剛度小,因此只承擔(dān)了總載荷的弱,總載荷基本上是由車架承受。雖然實(shí)際上載重量以集中力的方式作用在車架上,但是作用的位置點(diǎn)具有不確定性,在本次試驗(yàn)中還是按照均布力的方式均勻施加在車架上。車架與懸架連接的八個(gè)面施加固定位約束。然后在車架上施加載荷。發(fā)動(dòng)機(jī)和變速箱按照集中力方式加載如圖3.4,駕駛室均勻分布在車架前端2200mm上,其余總成加總載重量10000kg按貨箱長度均勻分布在車架后端。如下圖3.3所示。
圖 3.3 貨物加載位置
圖 3.4 發(fā)動(dòng)機(jī)變速箱集中加力位置
約束條件施加完以后,自動(dòng)求解。
圖 3.5 滿載位移云圖
車架滿載靜止工況下的總變形如圖3.5 所示,由圖可以看出車架在滿載靜止工況下車架尾部的變形量最大,最大變形量為4.33mm,由于貨車車架的最大彎曲撓度通常小于10mm,所以該車架在靜態(tài)滿載工況下滿足性能要求。本車型由于車廂過長,所以車架后懸過長,模擬分析過程中載荷按照均勻分布,這才導(dǎo)致車架尾部變形最大。在實(shí)際使用中車廂尾端載重量不會(huì)過大,所以在實(shí)際使用中車架尾端變形量會(huì)更小。
由內(nèi)部應(yīng)力云圖3.6可以看出, 整個(gè)裝配體的等效應(yīng)力都沒有超過屈服應(yīng)力(320MPa)的部分,最大應(yīng)力出現(xiàn)在后輪后支撐處,應(yīng)力最大值136.47MPa,小于材料的屈服強(qiáng)度。因此,當(dāng)車架滿載靜止時(shí),滿足性能要求。
滿載時(shí)安全系數(shù)如圖3.7所示。
圖 3.6 滿載應(yīng)力云圖
圖3.7 滿載安全系數(shù)
3.3.2靜止30%超載
與滿載相比,后車架貨箱位置多施加30%負(fù)載,求解之后。位移變化結(jié)果如下圖3.8:
圖 3.8 30%超載位移云圖
車架30%靜止工況下的總變形如圖3.10所示,由圖可以看出車架在滿載靜止工況下的最大變形量為5.7401mm,位于貨車尾端。由于貨車車架的最大彎曲撓度通常小于10mm,所以該車架在靜態(tài)30%超載工況下滿足性能要求。
由內(nèi)部應(yīng)力云圖3.9可以看出, 整個(gè)裝配體的等效應(yīng)力都沒有超過屈服應(yīng)力(320MPa)的部分,最大應(yīng)力出現(xiàn)在后輪后支撐處,應(yīng)力最大值202.61MPa,小于材料的屈服極限。因此,當(dāng)車架30%超載時(shí),滿足性能要求。
圖 3.9 30%超載應(yīng)力云圖
經(jīng)過分析對比,貨車在50%超載時(shí),車架最大位移為6.6215mm如圖3.10所示。小于10mm。也能滿足性能要求。最大應(yīng)力如下圖3.11所示為233.58Mpa<320Mpa,符合性能要求。
經(jīng)過不同程度超載分析,該貨車車架性能滿足設(shè)計(jì)的載重要求,并且安全系數(shù)遠(yuǎn)遠(yuǎn)大于1,但考慮到在實(shí)際使用中,貨車不存在絕對的靜止情況,因此在靜止分析中安全系數(shù)遠(yuǎn)大于1是非常有必要的。
圖3.10 50%超載位移變化云圖
圖3.11 50%超載內(nèi)部應(yīng)力云圖
3.3.3 非水平扭轉(zhuǎn)
扭轉(zhuǎn)工況主要是模擬汽車一側(cè)輪胎駛?cè)氚伎踊蚴怯龅酵蛊鹫系K物時(shí),車架發(fā)生最為嚴(yán)重扭曲,此時(shí)車架受到的應(yīng)力及變形情況最為惡劣。這種情況一般發(fā)生在崎嶇不平的道路上,車速較低。給右前輪強(qiáng)制施加一個(gè)10mm的位移,其余三個(gè)輪按固定位移處理。算出車架的最大位移及應(yīng)力云圖如下圖3.12和3.13所示:
圖3.12 車架扭曲變形位移云圖
圖3.13 車架扭曲變形應(yīng)力云圖
圖3.14 車架扭曲變形局部應(yīng)力云圖
可見,在扭曲變形工況下最大位移發(fā)生在車架右前部如圖3.14所示,最大位移為11.096mm。最大應(yīng)力發(fā)生在懸架與車架連接處,最大應(yīng)力為342.79Mpa,已經(jīng)超過車架材料的屈服強(qiáng)度320Mpa,小于材料的抗拉極限強(qiáng)度500Mpa。過崎嶇路面車架的扭曲變形發(fā)生在瞬間且不會(huì)持續(xù),因此,該車架還是滿足性能要求的。
3.3.4橫向彎曲工況
汽車在行駛過程中,有時(shí)會(huì)遇到急轉(zhuǎn)彎的情況,因此離心力的作用,車架將受到側(cè)向載荷。按緊急右轉(zhuǎn)的極限狀態(tài)。轉(zhuǎn)彎狀況下車速按20km/h計(jì)算,轉(zhuǎn)彎半徑按10m計(jì)算。
根據(jù)側(cè)向加速度的計(jì)算公式
式 (3.1)
式中:a 汽車的側(cè)向加速度;
V 汽車的行駛速度;
R 轉(zhuǎn)彎半徑。
前輪施加固定約束,滿載工況下施加2.5m/側(cè)向加速度,求出其位移與應(yīng)力云圖如下圖3.15和3.16所示。
可見,在緊急轉(zhuǎn)彎工況下,最大位移發(fā)生在車架末端,最大位移量為4.5354mm。最大應(yīng)力發(fā)生在前懸架與元寶梁連接處,最大應(yīng)力為154.15Mpa。小于車架材料的屈服強(qiáng)度。滿足車架的性能要求。
圖 3.15 橫向彎曲位移云圖
圖 3.16 橫向彎曲應(yīng)力云圖
3.3.5緊急制動(dòng)工況
當(dāng)車輛遇到緊急情況進(jìn)行制動(dòng)時(shí),車架會(huì)受到各部分的載荷作用和沿縱向產(chǎn)生的慣性力作用。本文研究的是滿載緊急制動(dòng)工況,制動(dòng)工況考慮前后車輪完全抱死的情況下,取附著系數(shù)φ=0.7,汽車制動(dòng)時(shí)的最大減速度為0.7m/s。車架位移云圖和內(nèi)部應(yīng)力云圖如下圖3.17和3.18所示。
圖 3.17 緊急制動(dòng)位移云圖
由云圖可以看出,車架在滿載靜止工況下的最大變形量為4.39mm,由于貨車車架的最大彎曲撓度通常小于10mm,所以該車架在靜態(tài)滿載工況下滿足性能要求。
等效應(yīng)力都沒有超過屈服應(yīng)力(493MPa)的部分,最大應(yīng)力還是出現(xiàn)在左后輪后支撐處,應(yīng)力最大值154.24MPa小于材料的屈服極限。因此,當(dāng)車架滿載緊急制動(dòng)時(shí),滿足性能要求。
圖3.18 緊急制動(dòng)應(yīng)力云圖
3.4 基于靜力分析的車架輕量化
對汽車零部件的結(jié)構(gòu)優(yōu)化可以通過使部件中空化、薄壁化、小型化和復(fù)合化達(dá)到目的,對于該輕型載貨貨車主要從減薄壁厚和添加減重孔來降低質(zhì)量。
通過對車架四種典型工況靜態(tài)分析可以看出,貨車在除扭轉(zhuǎn)工況外,其余各種工況下,安全系數(shù)均大于1,就算在超載50%以后,車架的安全系數(shù)仍然大于1.因此此時(shí)可以考慮減薄壁厚來實(shí)現(xiàn)車架的輕量化,但是在扭轉(zhuǎn)工況下,當(dāng)給右前輪強(qiáng)制施加一個(gè)向上的位移時(shí),車架的最高內(nèi)部應(yīng)力超過材料的屈服強(qiáng)度,但我們可以看出超出屈服強(qiáng)度的部分只有右前輪車架與懸架的連接處,如下圖3.19所示;
圖 3.19 車架扭轉(zhuǎn)變形局部應(yīng)力云圖
因此我們可以通過加強(qiáng)懸架與車架的連接,同時(shí)用強(qiáng)度更高強(qiáng)度的材料來替換懸架與車架連接處的材料,達(dá)到更安全的目的。同時(shí)還可以通過增大橫梁上的圓孔直徑來減少材料用量,已達(dá)到輕量化的目的。從經(jīng)濟(jì)方面考慮,也可以換用價(jià)格更低廉的材料。
4 車架的模態(tài)分析
4.1車架模態(tài)分析的基本理論
在汽車行駛時(shí),作用在汽車各部件上的載荷都是動(dòng)載荷。若所受動(dòng)載荷較小時(shí),只需進(jìn)行靜態(tài)分析即可。若汽車行駛在凹凸不平的道路上,使得在它上面行駛的車輛產(chǎn)生垂直方向的位移變動(dòng),道路表面的凹凸不平是隨機(jī)的,它對車輛產(chǎn)生隨機(jī)激勵(lì)。如果這種隨機(jī)激勵(lì)引起的振動(dòng)過大的話,將使得乘員感到不舒服和不適應(yīng),對車架造成強(qiáng)度破壞或產(chǎn)生不允許的大變形[25]。因此我們有必要研究汽車結(jié)構(gòu)振動(dòng)的固有頻率及其相應(yīng)的振型。模態(tài)是振動(dòng)系統(tǒng)特性的一種表征,它實(shí)為構(gòu)成各種工程結(jié)構(gòu)復(fù)雜振動(dòng)的那些最簡單或最基本的振動(dòng)形態(tài)。通過模態(tài)分析可以得到結(jié)構(gòu)的固有頻率和主要振型,為振動(dòng)系統(tǒng)動(dòng)態(tài)設(shè)計(jì)及故障診斷提供依據(jù),同時(shí),它也是其它更詳細(xì)動(dòng)力學(xué)分析(如諧響分析、瞬態(tài)動(dòng)力學(xué)分析和譜分析)的基礎(chǔ)[26]。
車輛是一個(gè)復(fù)雜的機(jī)械系統(tǒng),從動(dòng)力學(xué)的觀點(diǎn)來看,車輛本身就是一個(gè)具有質(zhì)量、彈性和阻尼的震動(dòng)系統(tǒng)。由于車輛內(nèi)部各總成、零部件的固有頻率不同,減震方式不同,在行駛中常因路面不平,車速和運(yùn)動(dòng)方向的變化,車輪、發(fā)動(dòng)機(jī)和傳動(dòng)系統(tǒng)的不平衡,以及齒輪的沖擊等各種外部和內(nèi)部的激振作用而產(chǎn)生的整車和局部的振動(dòng),這種振動(dòng)使車輛的動(dòng)力性得不到充分的發(fā)揮,經(jīng)濟(jì)型變壞。同時(shí)還影響車輛的操縱穩(wěn)定性和平順性,甚至損壞車輛的零部件和運(yùn)載的貨物,縮短車輛用壽命[27]。
有限元法為結(jié)構(gòu)的動(dòng)態(tài)分析提供了一種有效的工具,應(yīng)用有限元進(jìn)行車輛結(jié)構(gòu)的動(dòng)態(tài)分析??梢缘玫杰囕v的各階固有頻率及振型,這一方面可以了解車輛結(jié)構(gòu)的固有動(dòng)力學(xué)特征,另一方面又為進(jìn)一步進(jìn)行車輛結(jié)構(gòu)的動(dòng)態(tài)響應(yīng)分析奠定基礎(chǔ)。通過車輛構(gòu)的諧響應(yīng)分析,可以得到車輛結(jié)構(gòu)在發(fā)動(dòng)機(jī)、傳動(dòng)系統(tǒng)及輪胎的不平衡所造成的簡諧激振力作用下的動(dòng)力學(xué)響應(yīng)。
一個(gè)N 自由度線性系統(tǒng),其運(yùn)動(dòng)微分方程為
式(4.1)
式中:M——質(zhì)量矩陣;
K——?jiǎng)偠染仃嚕?
X——位移向量;
F(t)——作用力向量;
t——時(shí)間。
由于結(jié)構(gòu)的阻尼問題比較復(fù)雜,并且大量實(shí)驗(yàn)結(jié)果表明,大多數(shù)結(jié)構(gòu)的阻尼比都非常小,對系統(tǒng)的固有頻率和振興的計(jì)算結(jié)果影響都比較小,可以忽略不計(jì),在模態(tài)分析時(shí),令=0。
當(dāng)F(t)=0 時(shí),忽略阻尼C 影響,方程變?yōu)?
式(4.2)
自由振動(dòng)時(shí),結(jié)構(gòu)上各點(diǎn)作簡諧振動(dòng),各節(jié)點(diǎn)位移
式(4.3)
由式(4.2)、(4.3)得
式(4.4)
求出特征值和特征值。
求得系統(tǒng)各階固有頻率即模態(tài)頻率,固有振型即模態(tài)振型。
4.2車架有限元模態(tài)分析結(jié)果
在進(jìn)行車架結(jié)構(gòu)設(shè)計(jì)時(shí),要保證車架的低階頻率介于發(fā)動(dòng)機(jī)怠速運(yùn)轉(zhuǎn)頻率和非簧載結(jié)構(gòu)的固有頻率之間,以防止整體共振的發(fā)生。車架彈性模態(tài)頻率也應(yīng)避開發(fā)動(dòng)機(jī)經(jīng)常工作的頻率范圍。車架激勵(lì)一般來源于路面和發(fā)動(dòng)機(jī)。路面的激勵(lì)頻率多在20Hz以下,該車發(fā)動(dòng)機(jī)的怠速為900r/min相應(yīng)發(fā)動(dòng)機(jī)的爆發(fā)頻率為30Hz,發(fā)動(dòng)機(jī)正常工作時(shí)經(jīng)常使用發(fā)動(dòng)機(jī)轉(zhuǎn)速為1200~1400r/min相應(yīng)的發(fā)動(dòng)機(jī)爆發(fā)頻率為40Hz.模態(tài)分析主要用來獲得結(jié)構(gòu)的固有頻率和振型,而結(jié)構(gòu)的固有頻率和振型對于承受動(dòng)態(tài)載荷的結(jié)構(gòu)是十分重要的參數(shù)??梢宰鳛閯?dòng)力學(xué)分析的基礎(chǔ)。根據(jù)模態(tài)分析理論,通常大型的工程結(jié)構(gòu)由于低階振動(dòng)對結(jié)構(gòu)影響最大,因此,此次結(jié)構(gòu)的模態(tài)分析只計(jì)算0~100Hz頻率范圍內(nèi)的固有頻率和振型即可。對車架有限元模型進(jìn)行模態(tài)求解,本次提取了前6 階頻率。各頻率值如表4.1,五階以上頻率已經(jīng)超過100Hz,所以六階頻率以上不再考慮。
表4.1 車架前六階模態(tài)分析結(jié)果
階數(shù)
頻率/HZ
最大變形/mm
1
35.002
3.4392
2
39.591
2.9652
3
41.530
4.0111
4
55.04
4.6436
5
102.58
3.1795
6
103.14
4.4512
圖4.1 車架的第一階振型
第一階模態(tài)分析如圖4.1頻率為35.002Hz,振型為尾部側(cè)向擺動(dòng),車架尾部變形最大。最大變形量為3.44mm。
4.2 車架的第二階振型
第二階模態(tài)分析如圖4.2頻率為39.591Hz,振型為車架中間側(cè)向彎曲,中間處變形最大。最大變形量為2.9707mm。
圖4.3 車架的第三階振型
第三階模態(tài)分析如圖4.3頻率為41.53Hz,振型為車架尾部上下俯仰,最大變形出現(xiàn)在車架最尾端。最大變形量為4.0201mm。
圖 4.4 車架的第四階振型
第四階模態(tài)分析如圖4.4頻率為55.54Hz,振型為車架尾端扭轉(zhuǎn)變形。最尾端扭轉(zhuǎn)變形最嚴(yán)重。最大變形量為4.7074mm。
圖 4.5 車架的第五階振型
第五階模態(tài)分析如圖4.5頻率為102.58Hz,振型為靠近車架尾端的地方發(fā)生側(cè)向彎曲,最大變形處發(fā)生在車架后橋與尾端中間處,最大變形量為2.2083mm。
圖 4.6 車架的第六階振型
第六階模態(tài)分析如圖4.6頻率為103.14Hz,振型為發(fā)動(dòng)機(jī)支架處發(fā)生扭曲變形,最大變形出現(xiàn)在發(fā)動(dòng)機(jī)支架下端,最大變形量為4.4781mm。
4.3車架外部激勵(lì)分析
4.3.1車架動(dòng)態(tài)特性要求
為防止車架工作過程中發(fā)生共振,車架的固有頻率應(yīng)滿足以下要求:
(1)低階頻率應(yīng)低于或高于發(fā)動(dòng)機(jī)怠速運(yùn)轉(zhuǎn)頻率,以避免在怠速下發(fā)生整車共振。
(2)彈性模態(tài)頻率應(yīng)盡量避開發(fā)動(dòng)機(jī)經(jīng)常工作的頻率范圍。
(3)固有頻率,應(yīng)避開路面不平度的激勵(lì)頻率。
(4)固有頻率之間有一定的距離,避免頻率耦合。
4.3.