側(cè)裝式少齒差傳動卷揚機(jī)結(jié)構(gòu)設(shè)計
資源目錄里展示的全都有預(yù)覽可以查看的噢,,下載就有,,請放心下載,原稿可自行編輯修改=【QQ:11970985 可咨詢交流】====================喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,原稿可自行編輯修改=【QQ:197216396 可咨詢交流】====================
緒論
前言
卷揚機(jī)又稱絞車,是由動力驅(qū)動的卷筒通過撓性件(鋼絲繩、鏈條)起升、運移重物的起重裝置。它結(jié)構(gòu)簡單,使用方便,廣泛應(yīng)用于建筑、安裝、運輸?shù)炔块T的拽引和起重作業(yè)。揚機(jī)按驅(qū)動方式可分為人力驅(qū)動和動力驅(qū)動兩大類。人力驅(qū)動型有:絞盤、手搖卷揚機(jī)等。用在缺乏電源或使用電源不便的地方。動力驅(qū)動型主要是電力驅(qū)動。 卷揚機(jī)按拽引速度可分快速和慢速兩種??焖倬頁P機(jī)一般拽引速度為30-50m/min,多用于建筑工地。慢速卷揚機(jī)拽引速度為7-15m/min,主要用于設(shè)備安裝作業(yè) 。
此次設(shè)計的是側(cè)裝式少齒差傳動卷揚機(jī),它是以少齒差行星齒輪傳動為傳輸系統(tǒng)。少齒差行星傳動是漸開線少齒差行星傳動的簡稱,它采用的是漸開線齒形。擺線針輪減速器和諧波減速器也屬于少齒差行星傳動原理,但擺線針輪減速器用的是擺線齒形,諧波減速器用的是三角形齒形(也有用漸開線齒形代) 。另外像ZX 型混凝土振動器用的是摩擦輪,但其增速原理也是少齒差行星傳動。由于它們都有專門名稱,所以一般所講的少齒差行星傳動是專指漸開線少齒差行星傳動而言的。隨著現(xiàn)代工業(yè)的發(fā)展,機(jī)械化和自動化水平的不斷提高,各工業(yè)部門需要大量減速器,并要求減速器的體積小、重量輕、傳動比大、效率高、承載能力大、運轉(zhuǎn)可靠以及壽命長等。減速器的種類雖然很多,但普通的圓柱齒輪減速器的體積大、結(jié)構(gòu)笨重;普通的蝸輪減速器在大傳動比時,效率較低;擺線針輪減速器雖能滿足以上提出的要求,但其成本高,需要專用設(shè)備制造。而利用少齒差行星傳動可降低成本。
少齒差行星齒輪傳動具有以下優(yōu)點:(1)加工方便、制造成本較低。漸開線少齒差傳動的特點是用普通的漸開線齒輪刀具和齒輪機(jī)床就可以加工齒輪,不需要特殊的刀具與專用設(shè)備,材料也可采用普通齒輪材料。(2)傳動比范圍大,單級傳動比為10~1000 以上。(3)結(jié)構(gòu)形式多,應(yīng)用范圍廣。由于其輸入軸與輸出軸可在同一軸線上,也可以不在同一軸線上,所以能適應(yīng)各種機(jī)械的需要。(4)結(jié)構(gòu)緊湊、體積小、重量輕。由于采用內(nèi)嚙合行星傳動,所以結(jié)構(gòu)緊湊;當(dāng)傳動比相等時,與同功率的普通圓柱齒輪減速器相比,體積和重量均可減少1/3~2/3。(5)效率高。當(dāng)傳動比為10~200 時,效率為80%~94%。效率隨著傳動比的增加而降低。(6)運轉(zhuǎn)平穩(wěn)、噪音小、承載能力大。由于是內(nèi)嚙合傳動,兩嚙合輪齒一為凹齒、一為凸齒, 兩者的曲率中心在同一方向, 曲率半徑又接近相等,因此接觸面積大,使輪齒的接觸強(qiáng)度大為提高;又因采用短齒制,輪齒的彎曲強(qiáng)度也提高了。此外,少齒差傳動時,不是一對輪齒嚙合,而是3~9 對輪齒同時接觸受力,所以運轉(zhuǎn)平穩(wěn)、噪音小,并且在相同的模數(shù)情況下,其傳遞力矩比普通圓柱齒輪減速器大?;谝陨咸攸c,小到機(jī)器人的關(guān)節(jié)、大到冶金礦山機(jī)械, 以及從要求不高的農(nóng)用、食品機(jī)械, 到要求較高的印刷和國防工業(yè)都有應(yīng)用實例。
缺點是:(1)漸開線少齒差傳動也有一些缺點,主要是它的設(shè)計計算比較復(fù)雜.由于嚙合齒輪的齒數(shù)差較少,采用標(biāo)準(zhǔn)齒輪傳動會出現(xiàn)許多干涉現(xiàn)象.為了避免各種干涉,需要采用變位齒輪.選擇適當(dāng)?shù)淖兾幌禂?shù)就成為少齒差傳動的關(guān)鍵問題.隨著計算機(jī)技術(shù)的問題,這一問題以逐步得到解決。(2)行星齒輪軸承的徑向載荷較大。(3)軸孔的位置精度要求較高,軸銷安裝也有一定困難。一般只有生產(chǎn)少齒差減速器的專業(yè)工廠能加工好,非專業(yè)的一般機(jī)械廠往往很難加工合格,在一定程度上限制了少齒差傳動的推廣。
利用少差齒傳動機(jī)構(gòu)的優(yōu)越性可以改進(jìn)和提高機(jī)械設(shè)備的傳動機(jī)構(gòu)技術(shù)性能,將漸開線少齒差行星齒輪傳動應(yīng)用于建筑起重卷揚機(jī)的動力傳輸系統(tǒng),是使傳統(tǒng)卷揚機(jī)減小體積,優(yōu)化結(jié)構(gòu),降低成本,提高性能的有效途徑,具有廣泛的前景。
目 錄
中文摘要 VI
外文摘要 VII
前言 VIII
1 緒論 1
1.1 卷揚機(jī)國內(nèi)外現(xiàn)狀和發(fā)展趨勢與研究的主攻方向 1
1.2 少齒差行星齒輪傳動計算現(xiàn)狀及發(fā)展 4
1.3 設(shè)計思路及方案論證 5
2 主要設(shè)計參數(shù)的確定 6
2.1 卷揚機(jī)工作級別的確定 7
2.2 鋼絲繩直徑的選取 7
2.3 卷筒計算直徑的確定 8
2.4 電機(jī)的選擇與傳動比的計算 8
3 漸開線少齒差減速裝置的設(shè)計 9
3.1 少齒差傳動原理 9
3.2 齒輪齒數(shù)的確定 10
3.3 齒輪模數(shù)的確定 10
3.4 齒輪基本參數(shù)的確定 13
3.5 傳動內(nèi)部結(jié)構(gòu)的選定與設(shè)計 16
3.6 軸的設(shè)計 18
4 部分零件的校核 23
4.1 少齒差行星傳動受力分析 24
4.2 銷軸的強(qiáng)度校核 26
4.3 輸出軸的強(qiáng)度校核 27
4.4 鍵的校核 29
4.5 軸承的校核 30
5 卷筒主要尺寸的確定 32
5.1 卷筒節(jié)徑、邊緣直徑和容繩寬度的確定 32
5.2 卷筒厚度與繩槽尺寸的確定 32
6 結(jié)束語 34
參考文獻(xiàn) 35
致謝 36
附錄 37
側(cè)裝少齒差傳動卷揚機(jī)設(shè)計
1 緒論
1.1 卷揚機(jī)國內(nèi)外現(xiàn)狀和發(fā)展趨勢與研究的主攻方向
1.1.1 國內(nèi)卷揚機(jī)概況
從70年代起,我國建筑卷揚機(jī)的生產(chǎn)進(jìn)入了技術(shù)提高、品種增多的新階段。在各廠自行設(shè)計和生產(chǎn)的基礎(chǔ)上,1973年,由卷揚機(jī)行業(yè)組織了有關(guān)廠家和院校聯(lián)合進(jìn)行了卷揚機(jī)基型設(shè)計,并充分考慮到了當(dāng)時中小廠家的生產(chǎn)能力。快速卷揚機(jī)的基型采用半開半閉式齒輪傳動,離合器采用單錐面石棉橡膠摩擦帶結(jié)構(gòu),操縱用手扳剎車帶制動。慢速卷揚機(jī)的基型為閉式傳動(圓柱齒輪傳動或蝸桿傳動減速器)、電磁鐵制動結(jié)構(gòu)。這兩種基型一直到現(xiàn)今還在生產(chǎn)。為適應(yīng)生產(chǎn)發(fā)展的需要,當(dāng)時第一機(jī)械工業(yè)部發(fā)布了JB926—74《建筑卷揚機(jī)型式與基本參數(shù)》和JB1803—76《建筑卷揚機(jī)技術(shù)條件》兩個部標(biāo)準(zhǔn),并把卷揚機(jī)行業(yè)劃歸常德建筑機(jī)械研究所(長沙建筑機(jī)械研究院前身)領(lǐng)導(dǎo)。隨著部標(biāo)準(zhǔn)的頒布,使建筑卷揚機(jī)有了大發(fā)展的基礎(chǔ)。在此期間,由于石化工業(yè)的發(fā)展,大型設(shè)備很多,都需要吊裝,如一些大型反應(yīng)塔,塔的高度達(dá)七八十米,質(zhì)量達(dá)五六百噸,就需要有大型吊裝用的卷揚機(jī),因而各廠家相繼生產(chǎn)了20t和32t卷揚機(jī)(圖1和圖2),滿足了經(jīng)濟(jì)發(fā)展的需要。
圖1 快速卷揚機(jī) 圖2 20t卷揚機(jī)
從70年代末期開始,中國實行了改革開放政策,使國民經(jīng)濟(jì)得到了大發(fā)展,基本建設(shè)務(wù)增加了很多,促使建筑機(jī)械的使用大量增加,生產(chǎn)卷揚機(jī)的廠家亦隨之大量增加。為使設(shè)計和生產(chǎn)規(guī)范化,國家頒布了GB1955—80《建筑卷揚機(jī)》、JJ3—83《建筑卷揚機(jī)設(shè)計規(guī)范》。隨著改革開放逐步深入,生產(chǎn)形勢的不斷發(fā)展,新產(chǎn)品的開發(fā)提到日程上來了,不少生產(chǎn)廠家成立了廠屬研究所,開發(fā)了如高速卷揚機(jī)、變速卷揚機(jī)、自動限位卷揚機(jī)等新產(chǎn)品,以及諧波傳動、擺線針輪傳動、圓弧齒齒輪傳動、圓弧齒圓柱蝸桿傳動等具有新型傳動型式的卷揚機(jī)。為使卷揚機(jī)的生產(chǎn)滿足日益增加的需求和解決中小廠家設(shè)計力量薄弱的情況,1988年卷揚機(jī)行業(yè)組織了九廠一所一校成立了卷揚機(jī)系列設(shè)計組,對單簡快速建筑卷揚機(jī)起重質(zhì)量從0.5t到2.5t的機(jī)型進(jìn)行了系列設(shè)計。這次設(shè)計分兩種機(jī)型,一種為基本型(電控卷揚機(jī)),一種為溜放型(手控卷揚機(jī))。設(shè)計既考慮到技術(shù)發(fā)展的趨勢,又考慮到廠家的生產(chǎn)能力。因此基本型為一字型布置,采用二級或三級圓柱斜齒輪傳動,電制動錐形轉(zhuǎn)子電動機(jī);溜放型采用封閉式二級行星齒輪傳動,普通Y系列電動機(jī),用手操作兩條制動帶控制工作和制動。這兩種機(jī)型結(jié)構(gòu)緊湊,加工簡單,操作方便,體積小,重量輕,一般中小企業(yè)均可生產(chǎn),滿足了生產(chǎn)的需要又實現(xiàn)了技術(shù)的進(jìn)步。為使卷揚機(jī)發(fā)展規(guī)范化,又相繼頒布了一系列有關(guān)建筑卷揚機(jī)的標(biāo)準(zhǔn),有GB1955——86《建筑卷揚機(jī)》、GB6947-86《建筑卷揚機(jī)試驗規(guī)范和方法》、GB7902.2—87《建筑卷揚機(jī)術(shù)語》、GB13327—91《建筑卷揚機(jī)安全規(guī)程》、JG/T5031—93《建筑卷揚機(jī)設(shè)計規(guī)范》等。
1.1.2 國外卷揚機(jī)概況
在國外,卷揚機(jī)的品種繁多,應(yīng)用也很廣泛。在西方技術(shù)先進(jìn)的國家中,雖然工業(yè)水平先進(jìn),機(jī)械化程度不斷提高,起重設(shè)備也在不斷更新,但仍不能完全淘汰卷揚機(jī)這樣的行之有效的簡單機(jī)械設(shè)備。下面介紹一下幾個主要國家生產(chǎn)卷揚機(jī)的狀況。
???(1)美國
??? 美國生產(chǎn)卷揚機(jī)的廠家有近百家,主要有貝波(BEEBE)國際有限公司、哲恩(THERN)有限公司等。貝波國際有限公司成立于1919年,有七十多年的設(shè)計和生產(chǎn)實踐經(jīng)驗。主要產(chǎn)品有:氣動鏈?zhǔn)骄頁P機(jī)(0.25~40t),防爆拖式氣動卷揚機(jī)(0.5~30t),駁船卷揚機(jī)(手動、氣動、電動、液壓,25~75t),電動鏈?zhǔn)骄頁P機(jī)(0.25~20t),電動葫蘆(0.25~15t),電動卷揚機(jī)(~12.5t),手動卷揚機(jī)(~75t),液壓卷揚機(jī)(1~10t),水平卷揚機(jī)(~9t),手動鏈?zhǔn)骄頁P機(jī)(0.5~100t),棘輪牽引器(~1.75t),空中吊運車(0.5~20t)。哲恩有限公司是美國較大的生產(chǎn)起重設(shè)備的公司,主要產(chǎn)品有各種手動卷揚機(jī)、電動卷揚機(jī)、提升機(jī)械及起重機(jī)。手動卷揚機(jī)的主要品種有:直齒傳動卷揚機(jī)、蝸桿傳動卷揚機(jī);電動卷揚機(jī)的主要品種有:蝸桿傳動系列、直齒齒輪傳動系列、齒輪蝸桿傳動組合系列、直接驅(qū)動系列、鏈傳動系列。其中直接驅(qū)動式電動卷揚機(jī)的傳動是全封閉行星齒輪傳動,傳動系統(tǒng)全部裝在卷筒里面,機(jī)架和卷筒用高強(qiáng)度鋼焊接而成。美國除上述兩家公司外,比較重要的生產(chǎn)廠家還有布勞斯公司、賽林公司、斯塔斯派克公司、阿姆降公司、英格索·藝德公司等。
(2)日本
日本從明治30年開始制造和使用卷揚機(jī)。據(jù)日本荷役機(jī)械研究所核計,1970~1975年間卷揚機(jī)的產(chǎn)量增加62.5%。據(jù)日本通產(chǎn)省機(jī)械核計月報載,僅1977年單純土建卷揚機(jī)的產(chǎn)量就達(dá)12萬臺,產(chǎn)值約100億日元。日本卷揚機(jī)行業(yè)由機(jī)械技術(shù)部會、荷役機(jī)械技術(shù)委員會領(lǐng)導(dǎo)。主要生產(chǎn)廠家有北川鐵工所、遠(yuǎn)滕鋼機(jī)、南星、越野總業(yè)、藝浦、松崗產(chǎn)業(yè)等80多個廠家。北川鐵工所是一家大型生產(chǎn)廠。其生產(chǎn)的卷揚機(jī)品種系列比較齊全,主要有:
1.動力卷揚機(jī) 分BF、MF、DF三種型式。功率為3.7~44kW,鋼絲繩拉力從5880~44100N,有18個規(guī)格。BF型是V型帶傳動,MF型是單筒開式齒輪傳動,DF型是雙筒開式齒輪傳動。其結(jié)構(gòu)特點是全部為標(biāo)準(zhǔn)型,采用改進(jìn)了的螺旋頂絲式離合器操縱,因而操作簡便,易調(diào)整。鼓形離合器采用單錐體式,摩擦材料采用帶型樹脂。
2.電動卷揚機(jī) 該廠生產(chǎn)的電動卷揚機(jī)為KW型,功率3.7~11Kw,拉力6000~142100N。四種規(guī)格。其結(jié)構(gòu)特點是:全封閉內(nèi)齒輪傳動:電動機(jī)在一端,減速器、制動器和操作部分在另一端,中間是卷筒,一字型布置;按鈕操作,可遠(yuǎn)距離遙控;最大特點是卷筒可纏繞8~9層,容量大,適于高層建筑使用。
3.大型電動卷揚機(jī) 主要用于提升大型重物或設(shè)備,可兩檔機(jī)械變速,設(shè)有電磁鐵制動器、手制動器和棘輪停止器,以確保安全。
1.1.3 國外卷揚機(jī)的發(fā)展趨勢
1.大型化 由于基礎(chǔ)工業(yè)的發(fā)展,大型設(shè)備和建筑構(gòu)件要求整體安裝,促使了大型卷揚機(jī)的發(fā)展。
2.采用先進(jìn)電子技術(shù) 為了實現(xiàn)卷揚機(jī)的自動控制和遙控,國外廣泛采用了先進(jìn)的電子技術(shù),對大型卷揚機(jī)安裝了電器連鎖裝置,以保證絕對安全可靠。
3.發(fā)展手提式卷揚機(jī) 為了提高機(jī)械化水平,減輕工人勞動強(qiáng)度,國外大力發(fā)展小型手提式卷揚機(jī),如以汽車蓄電池為動力的直流電動小型卷揚機(jī)。
4.大力發(fā)展不帶動力源裝置的卷揚機(jī) 歐美國家非常重視發(fā)展借助汽車和拖拉機(jī)動力的卷揚機(jī)。此種卷揚機(jī)機(jī)構(gòu)簡單,有一個卷筒和一個變速箱,動力源就是來自汽車或者拖拉機(jī)等。
1.2 少齒差行星齒輪傳動技術(shù)現(xiàn)狀及發(fā)展
少齒差行星齒輪傳動是行星齒輪傳動中的一種, 由一個外齒輪與一個內(nèi)齒輪組成一對內(nèi)嚙合齒輪副, 它采用的是漸開線齒形, 內(nèi)外齒輪的齒數(shù)相差很小, 故簡稱為少齒差傳動。一般所講的少齒差行星齒輪傳動是專指漸開線少齒差行星齒輪傳動而言的。漸開線少齒差行星齒輪傳動以其適用于一切功率、速度范圍和一切工作條件,受到了世界各國的廣泛關(guān)注, 成為世界各國在機(jī)械傳動方面的重點研究方向之一。
1.2.1 國內(nèi)為研究現(xiàn)狀
當(dāng)內(nèi)嚙合的兩漸開線齒輪齒數(shù)差很小時, 極易產(chǎn)生各種干涉, 因此在設(shè)計過程中選擇齒輪幾何參數(shù)的計算十分復(fù)雜。早在1949 年, 蘇聯(lián)學(xué)者就從理論上解決了實現(xiàn)一齒差傳動的幾何計算問題。但直到1960 年代以后,漸開線少齒差傳動才得到迅速的發(fā)展。目前有柱銷式零齒差十字滑塊、浮動盤等多種形式。
隨著少齒差行星齒輪傳動研究的深入, 已成功地開發(fā)出不少新的漸開線少齒差行星齒輪傳動形式。目前, 我國研究出一種連桿行星齒輪傳動—— 平行軸式少齒差內(nèi)齒行星齒輪傳動。該類傳動是以連桿內(nèi)齒輪( 齒板) 為行星輪, 采用雙曲柄輸入, 且無輸出機(jī)構(gòu)。主要有一齒環(huán)( 一片連桿行星齒板) 、二齒環(huán)( 兩片連桿行星齒板) 、三齒環(huán)及四環(huán)等結(jié)構(gòu)形式的減速器。
國內(nèi)外學(xué)者在齒形分析、結(jié)構(gòu)優(yōu)化、接觸分析、結(jié)構(gòu)強(qiáng)度、動態(tài)性能、傳動效率、運動精度方面進(jìn)行了大量的研究, 利用計算機(jī)技術(shù)進(jìn)行減速器各主要部件的實體建模、仿真、干涉檢查等, 縮短了產(chǎn)品的開發(fā)周期, 并應(yīng)用到產(chǎn)品的設(shè)計中, 取得了許多有價值的成果。如對N型內(nèi)齒行星齒輪傳動的基本結(jié)構(gòu)型式—— 環(huán)式減速器的傳動機(jī)理進(jìn)行了分析研究, 建立了環(huán)式減速器系統(tǒng)受力分析模型, 得出目前環(huán)式減速器存在慣性力或慣性力矩不平衡的結(jié)論。又如對平行動軸少齒差傳動多齒接觸問題動平衡進(jìn)行了研究, 以有限元彈性接觸分析理論為基礎(chǔ),建立了平行動軸少齒差傳動多齒接觸問題時的有限元分析模型, 提出了一種對研究平行動軸少齒差傳動內(nèi)齒輪副嚙合過程中實際接觸齒對數(shù)、齒間載荷的分配及齒面載荷分布的分析計算方法。為平行動軸少齒差內(nèi)嚙合齒輪傳動的承載能力的計算、齒輪幾何參數(shù)的確定及零部件的強(qiáng)度分析計算提供了理論依據(jù)。采用遺傳算法模擬生物自然進(jìn)化過程來搜索少齒差傳動參數(shù)的最優(yōu)解。通過優(yōu)化后的少齒差傳動裝置具有較小的體積和較好的傳動性能。
1.2.2 發(fā)展趨勢
齒輪傳動技術(shù)是機(jī)械工程技術(shù)的重要組成部分, 在一定程度上標(biāo)志著機(jī)械工程技術(shù)的水平, 因此, 齒輪被公認(rèn)為工業(yè)和工業(yè)化的象征。為了提高機(jī)械的承載能力和傳動效率, 減少外形尺寸質(zhì)量及增大減速機(jī)傳動比等, 國內(nèi)外的少齒差行星齒輪傳動正沿著高承載能力、高精度、高速度、高可靠性、高傳動效率、小型化、低振動、低噪音、低成本、標(biāo)準(zhǔn)化和多樣化的方向發(fā)展的總趨勢。少齒差行星齒輪傳動具有體積小、重量輕、結(jié)構(gòu)緊湊、傳動比大、效率高等優(yōu)點, 廣泛應(yīng)用于礦山、冶金、飛機(jī)、輪船、汽車、機(jī)床、起重運輸、電工機(jī)械、儀表、化工、農(nóng)業(yè)等許多領(lǐng)域, 少齒差行星齒輪傳動有著廣泛的發(fā)展前景。
1.3 設(shè)計思路及方案論證
設(shè)計卷揚機(jī)首先要確定卷筒直徑,因為它直接影響卷揚機(jī)的結(jié)構(gòu)及轉(zhuǎn)速。如果卷筒直徑大,會使卷揚的漲、抱閘系統(tǒng)的直徑增大,其產(chǎn)生的力矩大大增加;還使卷揚機(jī)的轉(zhuǎn)速下降,達(dá)不到設(shè)計要求。卷筒直徑確定后,可以進(jìn)行卷揚機(jī)的轉(zhuǎn)速計算。
接下來就是減速裝置設(shè)計計算(漸開線少齒差行星齒輪減速裝置設(shè)計,齒輪傳動設(shè)計)。而減速器的設(shè)計關(guān)鍵在于掌握漸開線少齒差行星傳動的原理:少齒差行星傳動原理如圖3所示,當(dāng)帶曲柄的輸入軸旋轉(zhuǎn)時,空套在曲柄上的行星輪Z1反向旋轉(zhuǎn)(Z2-Z1)/Z1轉(zhuǎn),然后通過輸出軸輸出,去速比是I=-Z1/(Z2-Z1),負(fù)號代表旋轉(zhuǎn)反向相反。
圖3 少齒差傳動原理簡圖
在漸開線少齒差傳動內(nèi)嚙合中,由于內(nèi)嚙合和外嚙合的齒數(shù)差少,在切削和裝配時常會產(chǎn)生干涉,以致造成廢品。因此,為了保證內(nèi)嚙合傳動的正常運轉(zhuǎn),設(shè)計時應(yīng)滿足一下限制條件:(1)內(nèi)嚙合的齒頂圓不小于基圓:(2)外嚙合的齒丁頂不得變尖,要有足夠的厚度;(3)內(nèi)嚙合的齒丁頂不得變尖,要有足夠的厚度;(4)不發(fā)生過渡曲線干涉,漸開線干涉和齒廓重迭干涉;(5)插齒刀切入進(jìn)給時,不發(fā)生跟切現(xiàn)象;(6)嚙合率不小于1。
此外,由于少齒差行星傳動的齒普遍采用正角度變位,其齒面接觸強(qiáng)度和齒根彎曲強(qiáng)度都較高,而且齒面接觸強(qiáng)度遠(yuǎn)高于齒根彎曲強(qiáng)度。所以,少齒差傳動齒輪的模數(shù)通常是按彎曲強(qiáng)度計算得出,或按結(jié)構(gòu)要求和功率大小初選,然后校核彎曲強(qiáng)度。
2 主要設(shè)計參數(shù)的確定
2.1 卷揚機(jī)工作級別的確定
由于卷揚機(jī)設(shè)計要求為:每日兩班間歇工作,工作壽命為10年;因此根據(jù)相關(guān)文獻(xiàn)查得其利用等級為級;又根據(jù)相關(guān)公式確定起載荷譜系數(shù)為0.25,因此
第 43 頁 (共 43 頁)
主要設(shè)計參數(shù)的確定
根據(jù)相關(guān)設(shè)計手冊確定起工作級別為級
2.2 鋼絲繩直徑的選取
根據(jù)已知條件(額定拉力10KN和提升速度20米/分)對鋼絲繩進(jìn)行選取。
目前在工業(yè)化國家,對鋼絲繩直徑的選擇普遍采用選擇系數(shù)法。國際標(biāo)準(zhǔn)ISO308(鋼絲繩的選擇)也推薦采用此方法。
鋼絲繩的直徑不應(yīng)小于下式計算的最小直徑
式中 s——鋼絲繩最大工作拉力
c—— 鋼絲繩選擇系數(shù),它與機(jī)構(gòu)的工作級別、鋼絲繩是否旋轉(zhuǎn)以及吊運物品的性質(zhì)等因素有關(guān)。目前,建筑卷揚機(jī)還沒有此系數(shù)的氣體規(guī)定??蓞⒖肌督ㄖ頁P機(jī)設(shè)計》一書中的表3-96進(jìn)行選取。部分?jǐn)?shù)據(jù)在下表已給出。
據(jù)查表取得c=0.0953,由已知s=10kN故算得:
0.0953×=9.53
可取鋼絲繩直徑為d=11,
表1 鋼絲繩選擇系數(shù)
卷揚機(jī)工作級別
t值(mm/
吊運一般物資
不旋轉(zhuǎn)鋼絲繩
可自由旋轉(zhuǎn)鋼絲繩
鋼絲繩的平均抗拉強(qiáng)度極限(MPa)
1570
1770
1960
2150
2450
1570
1770
A1
0.0710
0.0670
0.060
0.0750
A2
0.0750
0.0710
0.0670
0.0670
0.0800
A3
0.0850
0.0800
0.0750
0.0900
0.0850
A4~A6
0.0970
0.095
0.0953
0.1063
0.1060
A7~A8
0.1187
0.1187
0.1187
0.1333
0.1333
2.3 卷筒計算直徑的確定
由繞在卷筒上的鋼絲繩圈中心算起的卷筒直徑,稱為卷筒的計算直徑。為保證鋼絲繩有足夠的使用壽命,卷筒的計算直徑不易太小。
(mm)
值根據(jù)機(jī)構(gòu)的工作級別由《建筑機(jī)械設(shè)計》中表3-11選取,
據(jù)查表取得=19,則有:
=209mm
可取=240mm。
2.4 電動機(jī)功率的選擇、總傳動比計算與校驗
2.4.1 選擇電動機(jī)
正確選擇電動機(jī)額定功率的原則是:在電動機(jī)能夠滿足機(jī)械負(fù)載要求的前提下,最經(jīng)濟(jì)、最合理地決定電動機(jī)的功率。
建筑卷揚機(jī)屬于非連續(xù)工作機(jī)械,而啟動、制動頻繁。因此選擇電動機(jī)應(yīng)與其工作特點相適應(yīng)。建筑卷揚機(jī)主要采用三向交流異步電動機(jī)。
該卷揚機(jī)輸出功率=Fv=10××20/60=3.33×w
F——額定拉力(F=10kN);
V——提升速度(V=20米/分);
——卷揚機(jī)整機(jī)傳動效率。
可設(shè)定效率=0.85,則輸入功率=/=3.33×w÷0.85=3.922kw。
根據(jù)該卷揚機(jī)的工作特點可選Y系列異步電動機(jī)。
據(jù)化學(xué)工業(yè)出版社《機(jī)械設(shè)計手冊》第四版可選電動機(jī):Y132M2-6
其技術(shù)參數(shù)如表2:
表2 技術(shù)參數(shù)
型號
功率/kw
轉(zhuǎn)速 r/min
重量(kg)
Y132M1-6
4
960
75
2.4.2 確定傳動比
按額定轉(zhuǎn)速初定總傳動比 總傳動比按下式計算
式中 ——電動機(jī)額定轉(zhuǎn)速(r/min)
—— 卷筒轉(zhuǎn)速(r/min)
可按下式計算
漸開線少齒差減速裝置的設(shè)計
式中 ——鋼絲繩額定速度(m/min);
——卷筒基準(zhǔn)層鋼絲繩中心直徑(mm),即卷筒計算直徑。
由已知得:=20m/min 上面初定=240mm
故=26.53r/min
由此可計算總傳動比960÷26.5336
3 漸開線少齒差減速裝置設(shè)計
3.1 少齒差傳動原理
圖3-1所示是采用銷軸式輸出機(jī)構(gòu)的少齒差行星傳動簡圖,它主要由偏心軸、行星輪(兩個)、內(nèi)齒輪、銷套(未畫出)、銷軸、轉(zhuǎn)臂軸承(未畫出)等組成。屬于K-H-V型行星傳動的一種類型。
圖4 少齒差行星傳動簡圖
1-銷孔 2-銷軸 3-銷軸盤
-行星輪 -中心輪(內(nèi)齒圈) -偏心距
上圖中當(dāng)內(nèi)齒輪固定,偏心軸作為主動件轉(zhuǎn)動時,迫使行星輪繞內(nèi)齒圈作行星運動,并通過傳動比等于一的銷軸輸出。當(dāng)-=1時,偏心軸每轉(zhuǎn)一周,行星輪沿相反方向轉(zhuǎn)過一個齒。當(dāng)偏心軸轉(zhuǎn)過時,行星輪轉(zhuǎn)一轉(zhuǎn),輸出軸同樣轉(zhuǎn)一轉(zhuǎn)。這是一種傳動方式,另外一種傳動方式是構(gòu)件V固定,轉(zhuǎn)臂H主動,內(nèi)齒輪b從動,此種情況就是要設(shè)計的卷揚機(jī)的工作情形了。
3.2 齒輪齒差的確定
少齒差傳動一般齒差數(shù)為1~4,由于傳動比i=36,不是很大,故可取齒差數(shù)=2。
對于圖4所示的K-H-V少齒差行星傳動,若轉(zhuǎn)臂H固定,則:
當(dāng)內(nèi)齒輪2固定,轉(zhuǎn)臂H主動,構(gòu)件V從動時,可由上式得傳動比公式為:
上式中的“-”號表示從動件V與主動件H轉(zhuǎn)向相反。
當(dāng)構(gòu)件V固定,轉(zhuǎn)臂H主動,內(nèi)齒輪從動(即相當(dāng)于卷筒轉(zhuǎn)動的情況),可得出傳動比公式為:
上式中的“+”號,表示從動件2與主動件H的轉(zhuǎn)向相同。
已知齒數(shù)差==2,i=36,可得:
=2×36=72 , =72-2=70。
3.3 選定齒輪的精度等級和材料
一般選用7級精度。
內(nèi)齒輪采用40Cr,其熱處理要求:調(diào)質(zhì)后表面淬火,調(diào)質(zhì)硬度為250-280HB,齒面接觸疲勞極限應(yīng)力,齒輪齒根彎曲疲極限應(yīng)力;外齒輪(行星輪)用20CrMnTi,滲碳淬火,低溫回火,表面硬度,心部HR為302-388,齒面接觸疲勞極限應(yīng)力,齒輪齒根彎曲疲極限應(yīng)力。
3.4 齒輪模數(shù)的確定
由于少齒差行星傳動的齒輪普通采用正角度變位,其齒而接觸強(qiáng)度和齒根彎曲強(qiáng)度都較高,而且齒面接觸強(qiáng)度遠(yuǎn)高于齒根彎曲強(qiáng)度。所以,少齒差傳動齒輪的模數(shù)通常按彎曲強(qiáng)度決定;或按結(jié)構(gòu)要求和功率大小初選,然后校核彎曲強(qiáng)度。
在這里就按彎曲強(qiáng)度來確定模數(shù),因為少齒差傳動一般選用短齒,內(nèi)外齒輪嚙合的很好,齒面接觸較好,只要行星輪的彎曲強(qiáng)度足夠,內(nèi)齒輪就不會有問題的,所以在確定模數(shù)的時候就只用按行星輪的彎曲條件來計算模數(shù)。
按行星輪齒根彎曲強(qiáng)度設(shè)計,彎曲強(qiáng)度設(shè)計公式:
(1)根據(jù)行星輪的表面硬度查得其彎曲疲勞強(qiáng)度極限。
(2)由《機(jī)械設(shè)計》書中的圖10-18查得彎曲疲勞壽命系數(shù)。
(3)計算彎曲疲勞許用應(yīng)力
取彎曲疲勞安全系數(shù)S=1.4
(4)計算載荷系數(shù)K
① 試選載荷系數(shù)
② 計算外齒輪傳遞的扭矩
③ 取齒寬系數(shù)
④ 查材料的彈性影響系數(shù);內(nèi)齒輪的接觸疲勞強(qiáng)度為;外齒輪的接觸疲勞強(qiáng)度為。
⑤ 計算應(yīng)力循環(huán)次數(shù)
;
⑥ 查圖得接觸疲勞壽命系數(shù);
⑦ 計算接觸疲勞許用應(yīng)力
取失效概率為1%,安全系數(shù)是s=1.25
⑧ 試計算小齒輪分度圓直徑
,帶入數(shù)據(jù)得
⑨ 計算圓周速度
,帶入數(shù)據(jù)得v=3.307m/s
⑩ 計算齒寬
模數(shù)mm
初取齒高
所以 b/h=4.94
由v=3.307m/s,7級精度,由圖14-1-14查得動載荷系數(shù)1.09;
再由表10-3查得齒間載荷分布系數(shù) ;
再由表14-1-81得 使用系數(shù)。
由表查得7級精度、行星輪相對支承對稱布置時,
再由,=1.13查《機(jī)械設(shè)計》書中圖10-13得=1.125
所以載荷系數(shù)=1×1.09×1.1×1.125=1.35
(5)查取齒形系數(shù)
由《機(jī)械設(shè)計》書中圖10-5查得 =2.24
(6)查取應(yīng)力校正系數(shù)
由《機(jī)械設(shè)計》書中圖10-5查得 =1.75
(7)設(shè)計計算
帶入數(shù)值得出: =3.60
可取模數(shù)為m=4㎜。
3.5 齒輪基本參數(shù)的確定
3.5.1 尺寸基本參數(shù)的選定即幾何尺寸的計算
少齒差傳動齒輪尺寸設(shè)計中,在齒數(shù)模數(shù)已知的條件下,應(yīng)先選擇合適的嚙合角,通過變換變?yōu)橄禂?shù)來滿足設(shè)計要求。
齒輪齒數(shù) ,;
齒輪模數(shù) m=5㎜;
取齒頂高系數(shù) ;
取頂隙系數(shù) ;
齒形壓力角 ;
齒輪分度圓直徑 ,;
未變位時的中心距 ;
初選嚙合角 =40;
計算中心距 ;
實際中心距 =INT(*10+0.5)/10;
實際嚙合角 ;
分度圓分離系數(shù) ;
初取小齒輪變位系數(shù) ;
大小齒輪變位系數(shù)之差
齒輪頂高 ,;
分度圓直徑 ;
齒頂圓直徑 , ;
齒根圓直徑 ,
;
基圓直徑 ;
齒頂圓壓力角 ,;
重合度系數(shù)
齒廓干涉系數(shù)驗算 (GS應(yīng)大于0)
其中 ;
將上述公式代入下表3中計算得:
表3 齒輪幾何尺寸的計算
傳動比
1.028571
齒數(shù)差
模數(shù)
4
內(nèi)齒輪齒數(shù)
優(yōu)選值:
72
小齒輪齒數(shù)
70
圓整值:
72
標(biāo)準(zhǔn)中心距
4
初選嚙合角
角度值:
40
刀具齒形角
角度值:
20
弧度值:
0.6981317
弧度值:
0.349066
計算中心距
4.9067264
實際中心距
4.9
實際嚙合角
角度值:
39.90617
分度圓分離系數(shù)
0.225
弧度值:
0.696494
變位系數(shù)差
X2-X1:
0.343199
小輪變位系數(shù)
X1:
0
大輪變位系數(shù)
X2:
0.3431995
齒頂高系數(shù)
0.6
頂隙系數(shù)
0.3
小輪齒頂高
2.4
大輪齒頂高
1.5
小輪分度圓直徑
280
大輪分度圓直徑
288
小輪齒頂圓直徑
284.8
大輪齒頂圓直徑
285
小輪基圓直徑
263.1139
大輪基圓半徑
270.63147
小輪齒頂圓壓力角
大輪齒頂圓壓力角
角度值:
22.50366
角度值:
18.271029
弧度值:
0.392763
弧度值:
0.3188896
小輪齒根圓直徑
272.8
大輪齒根圓直徑
297.8445
重合度驗算
應(yīng)大于1:
1.098403
齒廓重迭干涉驗算
D1角度值:
89.81606
D2角度值:
87.845516
D1弧度值:
1.567586
D2弧度值:
1.5331935
GS應(yīng)大于0:
0.316221
以上結(jié)果表明系數(shù)滿足了重合度大于1.05和齒廓重疊干涉大于0的條件要求。
3.5.2 齒輪公法線長度的確定
公法線長度的確定對于加工齒輪極為重要,它是對齒輪輪齒加工是否達(dá)到所要求的尺寸的一個重要量度。而且用公法線測量法有它的優(yōu)點:測量時不與齒頂圓為基準(zhǔn),因此不受齒頂圓誤差的影響,測量精度較高并可放寬對齒頂圓的精度要求。在此只計算行星輪的公法線長度。行星輪的變位系數(shù)x=0,z=70,齒形角為20°,故由《機(jī)械設(shè)計手冊》第二版中冊表8-99查得跨測齒數(shù)=8,=23.1214。則公法線長度=92.49㎜。
3.6 傳動內(nèi)部結(jié)構(gòu)的選定與設(shè)計
3.6.1 轉(zhuǎn)臂軸承的選定
在行星輪確定的情況下,根據(jù)安裝條件結(jié)構(gòu)尺寸來選定轉(zhuǎn)臂軸承。根據(jù)各種軸承的用途和特點在本設(shè)計中可選用雙列向心球面滾子軸承。此種軸承能承受很大的徑向載荷,同時也可以承受少量的軸向載荷。也能自動調(diào)心適用于剛度較差的軸承座及多支點軸中。
在上節(jié)的表格中得出行星輪的分度圓直徑=280㎜,故齒寬。而轉(zhuǎn)臂軸承的寬度應(yīng)與行星輪的齒寬接近,且其外經(jīng)尺寸大約應(yīng)是行星輪齒根圓的一半(即大約為140㎜),根據(jù)以上兩個限制條件可選定轉(zhuǎn)臂軸承(雙列向心球面滾子軸承)。其參數(shù)如下圖5所示:
圖5 雙列向心球面滾子軸承
表4 選用軸承的基本尺寸及性能
軸承
型號
尺寸(㎜)
額定動載荷(kN)
額定靜載荷(kN)
極限轉(zhuǎn)速
d
D
B
r
脂潤滑
油潤滑
3516
80
140
33
3
104
103
2200
3000
由以上數(shù)據(jù)可知:行星輪的齒寬b=33,而實際齒寬系數(shù):
實際齒寬系數(shù)與先前假設(shè)的齒寬系數(shù)相差不大,故可不必再校核。
3.6.2 銷孔數(shù)目、尺寸的確定
由于行星輪分度圓直徑為280㎜,根據(jù)《機(jī)械設(shè)計手冊》里《輪系》一章中表36.2-42銷孔數(shù)目參考值查得應(yīng)選銷孔數(shù)目為10(=10)。
銷孔的尺寸公差不應(yīng)低于7級精度。
銷孔的公稱尺寸理論上是銷套外徑加上兩個中心距。但考慮別銷孔、銷軸以及銷套的加工和裝配誤羌。對銷孔的公稱直徑再加適量的補(bǔ)償尺寸。太小時,將要求提高零件的加工精度。并給裝配造成一定困難,太大時,則承受載荷的銷軸數(shù)日將減?。绊懗休d能力。一般取=0.15~0.25㎜,行星輪尺寸小時,取較小值、反之取較大值。 在這里可?。?.2㎜。而銷孔的尺寸就要通過畫圖來初定了。下圖6是已經(jīng)多次畫圖比較得出的:
圖6 行星輪簡易工作圖
銷孔直徑=44㎜,銷孔公差配合選用F7,其上下偏差為(+50,+25)。
銷孔分布圓直徑=206.4㎜。
3.6.3 銷軸套、銷軸的確定
銷軸式W機(jī)構(gòu)是由固連在銷軸盤上的若干個銷軸與行星齒輪端面上的對應(yīng)的等分孔所組成。在機(jī)構(gòu)上行星輪上的銷軸孔要比銷軸套外經(jīng)大兩倍的偏心距,但考慮到一些加工裝配誤差還應(yīng)加上一個補(bǔ)償尺寸,上面也已經(jīng)提到。在這里可取值=0.2㎜。
故銷套外經(jīng)=44-2×4.9-0.2=34㎜。
銷套長度可根據(jù)畫圖確定,初定為72㎜。
偏心距(即實際中心距)=4.9。
可初定銷軸套內(nèi)徑為28㎜,即銷軸直徑=28。
根據(jù)少齒差傳動零件的裝配配合要求可對銷軸、銷軸套的配合公差進(jìn)行選擇。銷軸套外徑選用h6,其尺寸的上下偏差為(0,-0.016),銷軸套內(nèi)徑與銷軸配合選用F8/h6,銷軸套內(nèi)徑尺寸的上下偏差為(+0.053,+0.02),銷軸直徑的上下偏差為(0,-0.016)。以上偏差值是通過查《機(jī)械零件設(shè)計手冊》一書中的表1.1-5和1.1-6所得。在結(jié)構(gòu)設(shè)計中采用懸臂梁式銷軸。
3.6.4 偏心套基本尺寸的確定
偏心套的尺寸要根據(jù)結(jié)構(gòu)要求來確定。其視圖如圖3-4所示
圖3-4
圖7 偏心套工作簡圖
偏心套的偏心距即為內(nèi)外齒輪的偏心距e=4.9㎜。其內(nèi)徑初定為45㎜。可據(jù)此推測出輸入軸的結(jié)構(gòu)尺寸。
3.7 軸的設(shè)計
軸設(shè)計的特點是:在軸系零、部件的具體結(jié)構(gòu)末確定之前,軸上力的作用點和支點間的跨距無法精確確定,故彎矩大小和分布情況不能求出,因此在軸的設(shè)計中,必須把軸的強(qiáng)度計算和軸系零、部件結(jié)構(gòu)設(shè)計交錯進(jìn)行,邊畫圖、邊計算、邊修改。
軸的材料種類很多,設(shè)計時主要根據(jù)對鈾的強(qiáng)度、剛度、耐磨性等要求.U及為實現(xiàn)這些要求而采用的熱處理方式.同時考慮制造工藝問題加以選用,力求經(jīng)濟(jì)
合理。
軸的常用材料是35、45、50優(yōu)質(zhì)破累結(jié)構(gòu)鋼。最常用的是45鋼。在此所用的到的軸都選用45鋼。其性能如下:
表5 45鋼的性能
材料牌號
熱處理
毛坯直徑(mm)
硬度(HB)
拉伸強(qiáng)度極限
拉伸屈服極限()
彎曲疲勞極限()
剪切疲勞極限()
許用彎曲應(yīng)力
45
正火
25
241
610
360
260
150
55
正火
100
170~217
600
300
275
140
回火
>100~300
162~217
580
290
270
135
調(diào)質(zhì)
200
217~255
650
360
300
155
60
3.7.1 輸入軸的設(shè)計
軸的合理外型應(yīng)滿足:軸和裝在軸上的零件要有準(zhǔn)確的工作位置;軸上的零件應(yīng)便于裝拆和調(diào)整。軸應(yīng)具有良好的制造工藝性.影響軸結(jié)構(gòu)的主要因素有:軸的受力性質(zhì),大小,方向及分布情況;軸上零件的布置和固定形式;所采用軸承類型和尺寸;軸的加工工藝等。
1)求出輸入軸上的轉(zhuǎn)矩
其中:---輸入功率,取4kW;
---輸入轉(zhuǎn)速,取960 r/min;
2)初步確定軸得最小直徑
由于軸的材料選用的為45鋼,調(diào)質(zhì)處理,抗拉強(qiáng)度,屈服
,彎曲疲勞極限,扭轉(zhuǎn)疲勞極限。通過
《機(jī)械設(shè)計手冊》第四版第二卷表6-1-19選取=126。則有:。
輸入軸的最小直徑安裝在聯(lián)軸器處軸的直徑,為了使所選的軸的直徑與聯(lián)軸器的孔徑相適應(yīng),故需同時選取聯(lián)軸器型號。
聯(lián)軸器轉(zhuǎn)矩的計算:
(N.m)
式中——驅(qū)動功率,KW;
——工作轉(zhuǎn)速,r/min;
——動力機(jī)系數(shù),由于為電動機(jī),故取1;
——工作系數(shù),故取1.75;
——啟動系數(shù),取1;
——溫度系數(shù),取1.1;
——公稱轉(zhuǎn)矩,N.m
所以,。
按照計算轉(zhuǎn)矩應(yīng)小于聯(lián)軸器的公稱轉(zhuǎn)矩的條件,又考慮到要與電動機(jī)的軸相聯(lián)查機(jī)械設(shè)計手冊第二卷,選用GL5型滾子鏈聯(lián)軸器,其公稱轉(zhuǎn)矩為250N.m。半聯(lián)軸器的孔徑,半聯(lián)軸器與軸配合的轂孔的長度。由于要考慮到軸端有鍵槽和在結(jié)構(gòu)上的要求,在此先將最小直徑取為35㎜。其余各段直徑均按5㎜放大。
F E D C B A
圖8 輸入軸工作簡圖
3)軸的結(jié)構(gòu)設(shè)計及周向定位
擬定軸上零件的裝配方案:
(1)A-B段接聯(lián)軸器,軸伸長度通過查《簡明機(jī)械設(shè)計手冊》中表2-13可確定A-B段即軸深長為58㎜,軸深公差選用k6,其上下偏差分別為(+0.018、+0.002)。其間選用A型平鍵(GB/T1096-1979),尺寸為b×h×L=10×8×53。查《簡明機(jī)械設(shè)計手冊》中表7-2得出:采用一般鍵聯(lián)接,則鍵槽寬b的上下偏差為(0,-0.036)。半聯(lián)軸器與軸的配合為H7/k6,A-B段直徑極限偏差為(+0.018、+0.002);
(2)B-C段還要穿過支座、端蓋、大小軸承,還要考慮其中的間隙,可初定其長度為57㎜,該段直徑為40㎜。軸只受扭轉(zhuǎn)應(yīng)力,受軸向力很小,所以在軸與支架的連接處選用深溝球軸承,初步確定軸承型號 (GB/T276-1994)6208型。該段與軸承、支座、端蓋的配合公差選用k6,其上下偏差分別為(+0.018、+0.002);
(3)C-D段的精度不必要求太高,因為在此段不須安裝其他零件,該段直徑為45㎜;
(4)D-E段要安裝偏心套其間有鍵的聯(lián)結(jié),所選用鍵的尺寸為b×h×L=14×9×70。采用一般鍵聯(lián)接,鍵槽寬b的上下偏差為(0,-0.043)。偏心套的長度為75㎜,故可設(shè)計該段的長度為77㎜。在該段偏心套上還聯(lián)接有軸承,在此可選用雙列向心滾子軸承軸承型號是3516,此段直徑設(shè)定為45㎜。該段的配合公差選用k6,其上下偏差分別為(+0.018、+0.002);
(5)E-F段就與軸承聯(lián)接,其長度初定為22㎜,直徑為40㎜,故與之相聯(lián)的軸承可選深溝球軸承(GB/T276-1994)6208型。該段的配合公差選用k6,其上下偏差分別為(+0.018、+0.002)。在此其間軸承的定位沒有軸肩的都是采用擋圈定位,擋圈尺寸要根據(jù)具體裝配情況而定。以上的公差配合通過查閱《機(jī)械零件設(shè)計手冊》中表1.1-6得出。
4)確定軸上圓角和倒角尺寸
參考課本《機(jī)械設(shè)計》表15-2,取軸端倒角為1.6×45°,軸右端軸肩處圓角半徑為1.6㎜其余各處倒角和圓角參看附圖。
3.7.1 輸出軸(固定軸)的設(shè)計
在本設(shè)計中的輸出軸是固定不動的,它與銷軸盤固聯(lián)在一起,這使得銷軸固定不動,從而使得行星輪作平動帶動內(nèi)齒輪轉(zhuǎn)動,最終帶動卷筒一起跟隨內(nèi)齒輪轉(zhuǎn)動。其工作圖如圖9所示。
選用材料:20cr,調(diào)質(zhì)處理,抗拉強(qiáng)度,屈服點,彎曲疲勞極限,扭轉(zhuǎn)疲勞極限。通過《機(jī)械設(shè)計手冊》第四版第二卷表6-1-19選取=102有:
——輸出功率(=3.33×w)
——卷筒轉(zhuǎn)速(=26.53r/min)
由于要考慮到軸端有鍵槽和在結(jié)構(gòu)上的要求,在此先將最小直徑取為53㎜。聯(lián)接支座的部分直徑初定為55㎜。其他部分尺寸如下圖3-6所示。
在軸的最左端,使用平鍵使其和支架固聯(lián)在一起從而使其不能轉(zhuǎn)動。為了安全在次選用雙鍵聯(lián)接,所選用鍵(平鍵GB/1095-1979)的尺寸為b×h×L=16×10×60。在此采用一般鍵聯(lián)接,鍵槽寬b上下偏差為(0,-0.043)。軸伸長度經(jīng)查《簡明機(jī)械設(shè)計手冊》中表2-13可確定A-B段即軸深長為82㎜,即為A-B段的長度,軸深公差選用h7,其上下偏差分別為(0、-0.025);B-C段上要裝上軸承、卷筒蓋和小端蓋等,經(jīng)畫圖可初定這一段的長度為72㎜。為了與相應(yīng)的軸承配合固初定此段的直徑為55㎜。選用的軸承為深溝球軸承(GB/T276-1994)6211型。該段與軸承、支座、端蓋的配合公差選用h7,其上下偏差分別為(0、-0.025);C-D段要通過卷筒但不安裝任何零件,故為了減少材料的用量可將此段的直徑適當(dāng)縮小,初定為52㎜,長度要根據(jù)卷筒的長度及裝配尺寸確定,初定為262㎜;D-E段通過安裝軸承與卷筒聯(lián)接,此段的長度為38㎜,直徑為55㎜,選用的軸承為深溝球軸承(GB/T276-1994)6211
部分零件的校核
型。在該軸上的軸承的軸向固定都用擋圈固定。該段的配合公差選用k6,其上下偏
圖9 輸入軸工作簡圖
差分別為(+0.021、+0.002)。軸右端與銷軸相聯(lián)的銷軸盤的直徑初定為270㎜。盤的寬度為30㎜,銷孔直徑與銷軸相同,為28㎜,銷軸與輸出軸(銷孔)的配合選用h6/P7。銷孔尺寸上下偏差為(-0.022、-0.074)。銷孔分布圓直徑為206.4㎜,在該圓上有十個銷孔均勻分布。其他尺寸間附圖。
4 部分零件的校核
少齒差行星齒輪傳動主要受力構(gòu)件有內(nèi)齒輪、行星輪、輸出機(jī)構(gòu)和轉(zhuǎn)臂軸承等。行星輪承受內(nèi)齒輪、輸出機(jī)構(gòu)和轉(zhuǎn)臂軸承的作用力(不計摩擦力),其反作用力是行星輪對對上述構(gòu)件的作用力。參看圖9,當(dāng)行星輪逆時針以轉(zhuǎn)速回轉(zhuǎn)時,它作用給內(nèi)齒輪的總發(fā)向力為F,而作用給輸出機(jī)構(gòu)的合力為:
圖9 行星輪受力分析圖 圖10 行星輪受力簡圖
4.1 少齒差行星齒輪傳動受力分析
4.1.1 齒輪受力
輸出機(jī)構(gòu)固定,內(nèi)齒輪輸出:
齒輪分度圓受力
表6 輪齒受力計算公式
項目
代號
計算公式
齒輪
N型傳動,輸出結(jié)構(gòu)固定,內(nèi)齒輪輸出
圓周力
分度
圓上
節(jié)圓
上
徑向力
法相力
F
——輸出轉(zhuǎn)矩(=1.4134×N·㎜)
,——分別是行星輪和內(nèi)齒輪的齒數(shù)(=70,=72)
——行星輪分度圓直徑(=280㎜)
——實際嚙合角(=39.9°)
——初選嚙合角(=40°)
將上述數(shù)值代入表格中的式中得出:
=5889.17N,=5897.78N,=4931.31N,F(xiàn)=7687.76N。
4.1.2 輸出機(jī)構(gòu)受力
行星輪多銷軸的作用力隨著銷軸的位置不同而變化,當(dāng)=/2時,Q為最大即為。行星輪對銷軸的最大作用力為:
——銷孔分布圓半徑(=103.2㎜)
——銷軸數(shù)目(=10)
代入數(shù)據(jù)得出:=3195.67N
4.1.3 轉(zhuǎn)臂軸承受力
少齒差內(nèi)嚙合的轉(zhuǎn)臂軸承裝入行星輪與轉(zhuǎn)臂之間。在行星輪上還要考慮輸出機(jī)構(gòu)的安排,所以轉(zhuǎn)臂軸承的尺寸受到一定的限制。實踐證明,轉(zhuǎn)臂軸承的壽命往往是影響這種傳動承載能力的關(guān)鍵。
上圖10為行星輪受力簡圖。圖示,只有左邊的銷軸與行星輪軸肩有作用力。根據(jù)分析,左邊各銷軸對于行星輪作用力之和的最大值為:
=N
圖10中F可分解為和(行星輪基圓半徑=131.56㎜)
=N
=tan=4134.8N
由力多邊形可知,轉(zhuǎn)臂軸承作用于行星輪的力為:
代入數(shù)值得出:=15577.46N
4.2 銷軸的強(qiáng)度校核計算
由于行星輪與內(nèi)齒輪齒廓曲率半徑很接近,齒輪接觸面積較大,接觸應(yīng)力小,因此常不計算齒面接觸應(yīng)力。而且在設(shè)計齒輪計算齒輪模數(shù)時就是應(yīng)用彎曲應(yīng)力計算的,固齒輪的齒面彎曲應(yīng)力是滿足的,在此不必在對齒輪進(jìn)行校核?,F(xiàn)對銷軸進(jìn)行校核。
懸臂式銷軸的彎曲應(yīng)力校核公式:
式中:——制造和安裝誤差對銷軸載荷影響系數(shù) 。=1.35~1.5,精度低時取大值,反之取小值,在次?。?.35
——行星輪對銷軸的作用力(上節(jié)算得=3195.67N)
——銷軸直徑(=28㎜)
——許用彎曲應(yīng)力(銷軸的材料為20CrMnMo,根據(jù)銷軸材料查?。?50~200)
L的值從下圖11中取得,約為50㎜,則:
《
圖11 銷軸工作簡圖
因此銷軸的強(qiáng)度是足夠的,其尺寸符合要求。
4.3 輸入軸的強(qiáng)度校核
軸在載荷作用下,將產(chǎn)生彎曲或扭轉(zhuǎn)變形。在進(jìn)行州的強(qiáng)度校核時,應(yīng)根據(jù)軸的具體受載及應(yīng)力情況采用相應(yīng)的計算方法,并恰當(dāng)?shù)倪x取許用應(yīng)力。在此,輸入軸受到彎矩和扭矩,按彎扭合成強(qiáng)度條件進(jìn)行計算,其核算公式為:
式中: ——軸的計算應(yīng)力,MPa;
——軸所受的彎矩,N·㎜;
——軸所受的扭矩,N·㎜;
——軸的抗彎截面系數(shù),;
——對稱循環(huán)變應(yīng)力時軸的許用彎曲應(yīng)力。
1)做出軸的計算簡圖(即力學(xué)模型)
在計算軸所受載荷時,常將軸上的分布載荷簡化為集中力,其作用點取為載荷分布段的中點。各支承處所受的反力和應(yīng)力集中點的反力、轉(zhuǎn)矩都已在圖中表示出來了。個支承處與應(yīng)力集中點之間的距離算得結(jié)果在圖中也已表明。如圖12。
2)做出彎矩圖
軸所受的載荷是從軸上的偏心套傳來的,而偏心套所受的力又是行星輪傳遞的。行星輪所受的力在4.1.1已算出,圓周力為(節(jié)圓上)為=5897.78N,徑向力為=4931.31N,即為軸所受的力。為了求出各支承處的水平反力和垂直反力列出以下四個個方程:
+=5897.78N
×50=×100
+=4931.31N
×50=×100
聯(lián)立以上四個方程可得出:=3931.85N,=1965.93N,=3287.54,=1643.77N。
彎矩,。
總彎矩為
3)做出扭矩圖
傳遞扭矩T=。
扭矩圖如圖
4)校核軸的強(qiáng)度
在軸上,偏心套聯(lián)接處為危險截面(即截面B)如圖所示。對軸的抗彎截面系數(shù)的計算公式查課本《機(jī)械設(shè)計》中表15-4得出=。由附圖可知d=45㎜,b=14㎜,t=5.5㎜,代入數(shù)據(jù)得出=7611.3。
在此處的扭轉(zhuǎn)應(yīng)力為靜應(yīng)力,故取,軸的計算應(yīng)力:
前已選定軸的材料為45鋼,調(diào)質(zhì)處理,查課本《機(jī)械設(shè)計》中表15-1得出。因此<,故安全。
圖12 輸入軸受力分析簡圖
4.4 鍵的校核計算
所用到的三個鍵都是平鍵。設(shè)計中所涉及的鍵均為靜聯(lián)結(jié),但有沖擊,故用以下公式校核:
式中:T為傳遞轉(zhuǎn)矩(N·㎜),k——鍵與輪轂的接觸高度(),h——為鍵高(㎜);,b——為鍵寬(㎜);d——為軸徑(㎜)。
查得 ,則校核過程如下:
4.4.1 聯(lián)軸器處鍵的校核
此處鍵(C型)傳遞的轉(zhuǎn)矩為聯(lián)軸器的轉(zhuǎn)矩,即T=,b×h×L=10×8×53,l=L-b=43㎜ ,d=35㎜,故有:
故安全
4.4.2 偏心套處鍵的校核
此處鍵(A型)傳遞的轉(zhuǎn)矩為輸入轉(zhuǎn)矩,即T=,b×h×L=14×9×70,l=L-b=56㎜ ,d=45㎜,故有:
故安全
4.4.3 支座處鍵的校核
此處鍵(A型)傳遞的轉(zhuǎn)矩為輸出轉(zhuǎn)矩,即T=F·/2=1200000N·㎜,b×h×L=16×10×60,l=L-b=44㎜ ,d=53㎜,且采用雙鍵聯(lián)接,故有:
故安全
4.5 軸承的校核計算
根據(jù)傳動的結(jié)構(gòu)要求選用的軸承如下表7所示:
滾動軸承的壽命校核計算公式:
式中n ——軸承轉(zhuǎn)速,r/min;
——軸承壽命指數(shù),對球軸承=3,對滾子軸承=10/3;
——壽命因數(shù),按表7-2-8選??;
——速度因數(shù),按表7-2-9選??;
——力矩載荷因數(shù),力矩載荷較小時,,較大時,;
——沖擊載荷因數(shù),按表7-2-10選取;
——溫度系數(shù),由于卷揚機(jī)長期在室外工作,工作溫度小于120°,故取。(查表7-2-11)(據(jù)《機(jī)械設(shè)計手冊》第四版第二卷)
。
表7 軸承代號及基本參數(shù)
型號
數(shù)目
基本參數(shù)
d
D
B
基本額定動載荷/kN
GB/T276-1994
6211
2
55
100
21
43.2
GB/T276-1994
6208
2
40
80
18
29.5
GB/T276-1994
6220
1
100
180
34
122
GB286-81
3516
2
80
140
33
104
1)軸承6211(球軸承),與卷筒轉(zhuǎn)速相同,n=26.53r/min;查得=4.58,=1.073,=1.5,=1.2,則:
2)軸承6208(球軸承),與端蓋聯(lián)接的軸承的轉(zhuǎn)速n為輸入軸與卷筒的相對速度,故;且查得=4.58,=0.324,=1.5,=1.2,則:
而與銷軸盤聯(lián)接的軸承的轉(zhuǎn)速與輸入軸的轉(zhuǎn)速相同,n=960,則:
3)軸承6220(球軸承),n=26.53r/min;查得=4.58,=1.073,=1.5,=1.2,
4)軸承3516(滾子軸承),轉(zhuǎn)速n為輸入軸與行星輪的相對速度,故;且查得=3.93,=0.363,=1.5,=1.2,則:
以上對軸承的校核說明了所選的所有軸承都滿足要求。
5 卷筒主要尺寸的確定
卷筒結(jié)構(gòu)形式較多,按照制造方式不同可分為鑄造卷簡和焊接
收藏