久草成人在线视频,欧美激情视频网,级别免费毛片在线看,中文字幕色婷婷在线视频,亚洲天堂成人在线,久久亚洲婷,日本黄色网址在线免费

(福建專用)2019高考數(shù)學(xué)一輪復(fù)習(xí) 第九章 解析幾何 9.4 直線與圓、圓與圓的位置關(guān)系課件 理 新人教A版.ppt

上傳人:tia****nde 文檔編號:14913917 上傳時間:2020-08-01 格式:PPT 頁數(shù):25 大?。?11KB
收藏 版權(quán)申訴 舉報 下載
(福建專用)2019高考數(shù)學(xué)一輪復(fù)習(xí) 第九章 解析幾何 9.4 直線與圓、圓與圓的位置關(guān)系課件 理 新人教A版.ppt_第1頁
第1頁 / 共25頁
(福建專用)2019高考數(shù)學(xué)一輪復(fù)習(xí) 第九章 解析幾何 9.4 直線與圓、圓與圓的位置關(guān)系課件 理 新人教A版.ppt_第2頁
第2頁 / 共25頁
(福建專用)2019高考數(shù)學(xué)一輪復(fù)習(xí) 第九章 解析幾何 9.4 直線與圓、圓與圓的位置關(guān)系課件 理 新人教A版.ppt_第3頁
第3頁 / 共25頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(福建專用)2019高考數(shù)學(xué)一輪復(fù)習(xí) 第九章 解析幾何 9.4 直線與圓、圓與圓的位置關(guān)系課件 理 新人教A版.ppt》由會員分享,可在線閱讀,更多相關(guān)《(福建專用)2019高考數(shù)學(xué)一輪復(fù)習(xí) 第九章 解析幾何 9.4 直線與圓、圓與圓的位置關(guān)系課件 理 新人教A版.ppt(25頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、9.4直線與圓、圓與圓的位置關(guān)系,知識梳理,考點自測,1.直線與圓的位置關(guān)系 設(shè)直線l:Ax+By+C=0(A2+B20), 圓:(x-a)2+(y-b)2=r2(r0), d為圓心(a,b)到直線l的距離,聯(lián)立直線和圓的方程,消元后得到的一元二次方程的判別式為.,<,,=,=,,<,知識梳理,考點自測,dr1+r2,無解,d=r1+r2,|r1-r2|

2、個圓的方程組成的方程組無解,則這兩個圓的位置關(guān)系為外切.() (3)“k=1”是“直線x-y+k=0與圓x2+y2=1相交”的必要不充分條件.() (4)過圓O:x2+y2=r2外一點P(x0,y0)作圓的兩條切線,切點為A,B,則O,P,A,B四點共圓且直線AB的方程是x0 x+y0y=r2.() (5)聯(lián)立兩相交圓的方程,并消掉二次項后得到的二元一次方程是兩圓的公共弦所在的直線方程.(),答案,知識梳理,考點自測,2,3,4,1,5,2.“a=1”是“直線l:y=kx+a和圓C:x2+y2=2相交”的() A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件,答案

3、,解析,知識梳理,考點自測,2,3,4,1,5,3.(2017寧夏石嘴山第三中學(xué)模擬)已知直線y=mx與圓x2+y2-4x+2=0相切,則m的值為(),答案,解析,知識梳理,考點自測,2,3,4,1,5,4.(2017遼寧大連一模)直線4x-3y=0與圓(x-1)2+(y-3)2=10相交所得弦長為(),答案,解析,知識梳理,考點自測,2,3,4,1,5,5.(2017山東棗莊一模)圓(x-2)2+(y+1)2=4與圓(x-3)2+(y-2)2=4的位置關(guān)系是.,答案,解析,考點1,考點2,考點3,例1(1)已知點M(a,b)在圓O:x2+y2=1外,則直線ax+by=1與圓O的位置關(guān)系是()

4、 A.相切B.相交C.相離D.不確定 (2)(2017北京東城一模)如果過原點的直線l與圓x2+(y-4)2=4切于第二象限,那么直線l的方程是() C.y=2xD.y=-2x,答案,解析,考點1,考點2,考點3,思考在直線與圓的位置關(guān)系中,求參數(shù)的取值范圍的常用方法有哪些? 解題心得1.判斷直線與圓的位置關(guān)系時,若兩方程已知或圓心到直線的距離易表達,則用幾何法;若方程中含有參數(shù),或圓心到直線的距離的表達較煩瑣,則用代數(shù)法. 2.已知直線與圓的位置關(guān)系求參數(shù)的取值范圍時,可根據(jù)數(shù)形結(jié)合思想利用直線與圓的位置關(guān)系的判斷條件建立不等式(組)解決.,考點1,考點2,考點3,對點訓(xùn)練1(1)(2017

5、廣東佛山一模)對任意aR,曲線y=ex(x2+ax+1-2a)在點P(0,1-2a)處的切線l與圓C:(x-1)2+y2=16的位置關(guān)系是() A.相交B.相切 C.相離D.以上均有可能 (2)若過點A(4,0)的直線l與圓C:(x-2)2+y2=1有公共點,則直線l的斜率的最小值為.,答案,解析,考點1,考點2,考點3,例2已知點M(3,1),直線ax-y+4=0及圓(x-1)2+(y-2)2=4. (1)求過點M的圓的切線方程; (2)若直線ax-y+4=0與圓相切,求a的值; (3)若直線ax-y+4=0與圓相交于A,B兩點,且弦AB的長為2 ,求a的值.,考點1,考點2,考點3,解:

6、 (1)圓心C(1,2),半徑r=2, 當(dāng)直線的斜率不存在時,方程為x=3. 由圓心C(1,2)到直線x=3的距離d=3-1=2=r知,此時,直線與圓相切. 當(dāng)直線的斜率存在時,設(shè)方程為y-1=k(x-3),即kx-y+1-3k=0. 即3x-4y-5=0. 故過點M的圓的切線方程為x=3或3x-4y-5=0.,考點1,考點2,考點3,考點1,考點2,考點3,思考如何運用圓的幾何性質(zhì)求解圓的切線與弦長問題? 解題心得1.求過某點的圓的切線問題時,應(yīng)首先確定點與圓的位置關(guān)系,然后求切線方程.若點在圓上(即為切點),則過該點的切線只有一條;若點在圓外,則過該點的切線有兩條,此時應(yīng)注意斜率不存在的

7、切線. 2.求直線被圓所截得的弦長時,通常考慮由弦心距、弦長的一半、半徑所構(gòu)成的直角三角形,利用勾股定理來解決問題.,考點1,考點2,考點3,對點訓(xùn)練2(1)(2017安徽馬鞍山一模)過點(3,6)的直線被圓x2+y2=25截得的弦長為8,這條直線的方程是 () A.3x-4y+15=0B.3x+4y-33=0 C.3x-4y+15=0或x=3D.3x+4y-33=0或x=3 (2)已知直線l:mx+y+3m- =0與圓x2+y2=12交于A,B兩點,過點A,B分別作直線l的垂線與x軸交于C,D兩點.若|AB|=2 ,則|CD|=.,答案,解析,考點1,考點2,考點3,例3已知圓C1:(x

8、-a)2+(y+2)2=4與圓C2:(x+b)2+(y+2)2=1外切,則ab的最大值為(),答案,解析,考點1,考點2,考點3,思考在兩圓的位置關(guān)系中,圓心距與兩圓半徑的關(guān)系如何? 解題心得1.判斷兩圓的位置關(guān)系,通常是用幾何法,從圓心距d與兩圓半徑的和、差的關(guān)系入手.如果用代數(shù)法,那么從交點個數(shù)也就是方程組解的個數(shù)來判斷,但有時不能得到準(zhǔn)確結(jié)論. 2.兩圓位置關(guān)系中的含參問題有時需要將問題進行化歸,要注重數(shù)形結(jié)合思想的應(yīng)用.,考點1,考點2,考點3,對點訓(xùn)練3(1)若把例3條件中的“外切”改為“內(nèi)切”,則ab的最大值為. (2)若把例3條件中的“外切”改為“相交”,則公共弦所在的直線方程為

9、. (3)若把例3條件中的“外切”改為“有四條公切線”,則直線x+y-1=0與圓(x-a)2+(y-b)2=1的位置關(guān)系是.,考點1,考點2,考點3,(2)由題意得,把圓C1,圓C2的方程都化為一般方程. 圓C1:x2+y2-2ax+4y+a2=0, 圓C2:x2+y2+2bx+4y+b2+3=0, 由-得(2a+2b)x+3+b2-a2=0, 即(2a+2b)x+3+b2-a2=0為公共弦所在直線方程.,考點1,考點2,考點3,(3)由兩圓存在四條切線,故兩圓外離, 故(a+b)29, 即a+b3或a+b<-3. 直線x+y-1=0與圓(x-a)2+(y-b)2=1相離.,考點1,考點2,考

10、點3,1.直線與圓、圓與圓的位置關(guān)系問題,考慮到圓的幾何性質(zhì),一般用幾何法解決. 2.直線與圓、圓與圓的交點問題,要聯(lián)立直線與圓的方程,或聯(lián)立圓與圓的方程來解決. 3.圓的切線問題: (1)過圓上一點的切線方程的求法是先求切點與圓心連線的斜率,再根據(jù)垂直關(guān)系求得切線斜率,最后通過直線方程的點斜式求得切線方程; (2)過圓外一點的切線方程的求法,一般是先設(shè)出所求切線方程的點斜式,再利用圓心到切線的距離等于半徑列出等式求出所含的參數(shù)即可.若只求出一條切線方程,則斜率不存在的直線也是切線. 4.圓的弦長問題首選幾何法,即利用圓的半徑、弦心距、弦長的一半滿足勾股定理;弦長問題若涉及直線與圓的交點、直線的斜率,則選用代數(shù)法.,考點1,考點2,考點3,1.過圓外一定點作圓的切線,有兩條,若在某種條件下只求出一個結(jié)果,則斜率不存在的直線也是切線. 2.本節(jié)問題的解決多注意數(shù)形結(jié)合,圓與其他知識的交匯問題多注意問題的轉(zhuǎn)化. 3.若圓與圓相交,則可以利用兩個圓的方程作差的方法求得公共弦所在直線的方程.,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!