《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 課時規(guī)范練36 數(shù)學(xué)歸納法 理 北師大版》由會員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 課時規(guī)范練36 數(shù)學(xué)歸納法 理 北師大版(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、課時規(guī)范練36 數(shù)學(xué)歸納法
基礎(chǔ)鞏固組
1.如果命題p(n)對n=k(k∈N+)成立,則它對n=k+2也成立.若p(n)對n=2也成立,則下列結(jié)論正確的是( )
A.p(n)對所有正整數(shù)n都成立
B.p(n)對所有正偶數(shù)n都成立
C.p(n)對所有正奇數(shù)n都成立
D.p(n)對所有自然數(shù)n都成立
2.用數(shù)學(xué)歸納法證明命題“當(dāng)n是正奇數(shù)時,xn+yn能被x+y整除”,在第二步時,正確的證法是 ( )
A.假設(shè)n=k(k∈N+),證明n=k+1時命題成立
B.假設(shè)n=k(k是正奇數(shù)),證明n=k+1時命題成立
C.假設(shè)n=2k+1(k∈N+),證明n=k+1時命題成立
D
2、.假設(shè)n=k(k是正奇數(shù)),證明n=k+2時命題成立
3.(2018安徽蚌埠期末,5)用數(shù)學(xué)歸納法證明不等式“+…+(n>2)”的過程中,歸納遞推由n=k到n=k+1時,不等式的左邊( )
A.增加了一項
B.增加了兩項
C.增加了兩項,又減少了一項
D.增加了一項,又減少了一項
4.(2018遼寧遼陽期末,6)證明等式12+22+32+…+n2=(n∈N+)時,某學(xué)生的證明過程如下:
(1)當(dāng)n=1時,12=,等式成立;
(2)假設(shè)n=k(k∈N+)時,等式成立,
即12+22+32+…+k2=,則當(dāng)n=k+1時,
12+22+32+…+k2+(k+1)2
=+(k+
3、1)2
=
=
=,
所以當(dāng)n=k+1時,等式也成立,故原等式成立.
那么上述證明( )
A.全過程都正確
B.當(dāng)n=1時驗證不正確
C.歸納假設(shè)不正確
D.從n=k到n=k+1的推理不正確
5.(2018遼寧撫順期中,14)用數(shù)學(xué)歸納法證明:“兩兩相交且不共點(diǎn)的n條直線把平面分為f(n)部分,則f(n)=1+.”證明第二步歸納遞推時,用到f(k+1)=f(k)+ .?
6.試證:當(dāng)n∈N+時,f(n)=32n+2-8n-9能被64整除.
7.(2018山東師范大學(xué)附屬中學(xué)期中,18)證明:對任意的n∈N+,不等式·
4、…·成立.
8.(2018廣東中山一中三模,21)設(shè)數(shù)列{an}滿足a1=3,an+1=-2nan+2(n∈N+).
(1)求a2,a3,a4的值,并猜想數(shù)列{an}的通項公式(不需證明);
(2)記Sn為數(shù)列{an}的前n項和,用數(shù)學(xué)歸納法證明:當(dāng)n≥6時,有Sn<2n成立.
綜合提升組
9.設(shè)f(x)是定義在正整數(shù)集上的函數(shù),且f(x)滿足:“當(dāng)f(k)≥k2成立時,總可推出f(k+1)≥(k+1)2成立”.則下列命題總成立的是( )
A.若f(3)≥9成立,則當(dāng)k≥1時,均有f(k)≥k2成立
5、
B.若f(5)≥25成立,則當(dāng)k≤5時,均有f(k)≤k2成立
C.若f(7)<49成立,則當(dāng)k≥8時,均有f(k)4時,f(n)= (用n表示).?
11.(2018遼寧六校協(xié)作體期中,17)是否存在常數(shù)a,b使得等式12+22+…+n2=n(2n+1)(an+b)對一切正整數(shù)n都成立?若存在,求出a,b值,并用數(shù)學(xué)歸納法證明你的結(jié)論;若不存在
6、,請說明理由.
創(chuàng)新應(yīng)用組
12.(2018河南洛陽模擬,18)將正整數(shù)作如下分組:(1),(2,3),(4,5,6),(7,8,9,10),(11,12,13,14,15),(16,17,18,19,20,21),….分別計算各組包含的正整數(shù)的和如下,
S1=1,
S2=2+3=5,
S3=4+5+6=15,
S4=7+8+9+10=34,
S5=11+12+13+14+15=65,
S6=16+17+18+19+20+21=111,
(1)求S7的值;
(2)由S1,S1+S3,S1+S3+S5,S1+S3+S5+S7的值,試
7、猜測S1+S3+…+S2n-1的結(jié)果,并用數(shù)學(xué)歸納法證明.
13.已知函數(shù)f0(x)=(x>0),設(shè)fn(x)為fn-1(x)的導(dǎo)數(shù),n∈N+.
(1)求2f1+f2的值;
(2)證明:對任意的n∈N+,等式nfn-1+fn=都成立.
參考答案
課時規(guī)范練36 數(shù)學(xué)歸納法
1.B n=k時成立,當(dāng)n=2時,n=k+2成立,n為2,4,6,…,故n為所有正偶數(shù).
2.D 相鄰兩個正奇數(shù)相差2,故D選項正確.
3.C 當(dāng)n=k時,左邊=++…+, ①
當(dāng)n=k+1時,左邊=++
8、…++,②
所以增加了兩項+,又減少了一項,故答案為C.
4.A 考查所給的證明過程:當(dāng)n=1時驗證是正確的,歸納假設(shè)是正確的,從n=k到n=k+1的推理也是正確的,即證明過程中不存在任何的問題.故選A.
5.k+1 當(dāng)n=k(k≥2)時,有f(k)=1+,當(dāng)n=k+1時,f(k+1)=1+,
∴從k到k+1左端需增加的代數(shù)式1+-1-=(k+2-k)=k+1,
∴在證明第二步歸納推理的過程中,用到f(k+1)=f(k)+(k+1).
6.證明 (1)當(dāng)n=1時,f(1)=64,命題顯然成立.
(2)假設(shè)當(dāng)n=k(k∈N+,k≥1)時,f(k)=32k+2-8k-9能被64整除,
9、則當(dāng)n=k+1時,f(k+1)=32(k+1)+2-8(k+1)-9=9(32k+2-8k-9)+9·8k+9·9-8(k+1)-9=9(32k+2-8k-9)+64(k+1),
即f(k+1)=9f(k)+64(k+1),因此當(dāng)n=k+1時命題也成立.
根據(jù)(1)(2)可知,對于任意n∈N+,命題都成立.
7.證明 ①當(dāng)n=1時,左邊=,右邊=,因為>,所以不等式成立.
②假設(shè)當(dāng)n=k時不等式成立,即···…·>成立.則當(dāng)n=k+1時,
左邊···…··
>·=
=
=
>,
所以當(dāng)n=k+1時,不等式也成立.
由①②可得不等式恒成立.
8.解 (1)a2=5,a3=
10、7,a4=9,猜想an=2n+1.
(2)Sn==n2+2n,下證:n≥6(n∈N+)時都有2n>n2+2n.
當(dāng)n=6時,26>62+2×6,即64>48成立;
假設(shè)n=k(k≥6,k∈N+)時,2k>k2+2k成立,
那么當(dāng)n=k+1時,2k+1=2·2k>2(k2+2k)=k2+2k+k2+2k>k2+2k+3+2k=(k+1)2+2(k+1),即n=k+1時,不等式成立.
故對于所有的n≥6(n∈N+),都有2n>n2+2n成立.
9.D 對A,當(dāng)k=1或2時,不一定有f(k)≥k2成立;
對B,只能得出:對于任意的k≥5,均有f(k)≥k2成立,不能得出:對任意的k≤5
11、,均有f(k)≤k2成立;
對C,若f(7)<49成立不能推出任何結(jié)論;
對D,∵f(4)=25≥16,∴對于任意的k≥4,均有f(k)≥k2成立.故選D.
10.5 (n+1)(n-2) f(3)=2,f(4)=f(3)+3=2+3=5,
f(n)=f(3)+3+4+…+(n-1)
=2+3+4+…+(n-1)
=(n+1)(n-2).
11.解 分別令n=1,2,可得解得
故猜想等式12+22+…+n2=對一切正整數(shù)n都成立.
下面用數(shù)學(xué)歸納法證明:
①當(dāng)n=1時,由上面的探求可知等式成立.
②假設(shè)n=k(k∈N+,k≥1)時猜想成立,即12+22+…+k2=.
12、當(dāng)n=k+1時,
12+22+…+k2+(k+1)2=+(k+1)2
=
=
=.
所以當(dāng)n=k+1時,等式也成立.
由①②知猜想成立,即存在a=,b=使命題成立.
12.解 (1)S7=22+23+24+25+26+27+28=175.
(2)S1=1;S1+S3=16;S1+S3+S5=81;S1+S3+S5+S7=256;
猜測S1+S3+S5+…+S2n-1=n4.
證明如下:記Mn=S1+S3+S5+…+S2n-1,
①當(dāng)n=1時,猜想成立.
②設(shè)當(dāng)n=k時,命題成立,即Mk=S1+S3+S5+…+S2k-1=k4.
下面證明當(dāng)n=k+1時,猜想也成立.
13、事實上,由題設(shè)可知
Sn是由1+2+3+…+(n-1)+1=+1開始的n個連續(xù)自然數(shù)的和.
所以Sn=+1++2+…++n=,
所以S2k+1==(2k+1)(2k2+2k+1)=4k3+6k2+4k+1,
從而Mk+1=Mk+S2k+1=k4+4k3+6k2+4k+1=(k+1)4,
所以猜想在n=k+1時也成立.
綜合(1)(2)可知猜想對任何n∈N+都成立.
13.(1)解 由已知,得f1(x)=f'0(x)='=-,于是
f2(x)=f'1(x)='-'
=--+,
所以f1=-,f2=-+,
故2f1+f2=-1.
(2)證明 由已知,得xf0(x)=sin
14、x,等式兩邊分別對x求導(dǎo),得f0(x)+xf'0(x)=cos x,即f0(x)+xf1(x)=cos x=sinx+,類似可得,2f1(x)+xf2(x)=-sin x=sin(x+π),3f2(x)+xf3(x)=-cos x=sinx+,4f3(x)+xf4(x)=sin x=sin(x+2π).
下面用數(shù)學(xué)歸納法證明等式nfn-1(x)+xfn(x)=sinx+對所有的x∈N+都成立.
①當(dāng)n=1時,由上可知等式成立.
②假設(shè)當(dāng)n=k時,等式成立,即kfk-1(x)+xfk(x)=sinx+.因為[kfk-1(x)+xfk(x)]'=kf'k-1(x)+fk(x)+xf'k(x)=(k+1)fk(x)+xfk+1(x),
sinx+'=cosx+·x+'=sinx+,所以(k+1)fk(x)+xfk+1(x)=sinx+.
因此當(dāng)n=k+1時,等式也成立.
綜合①②可知等式nfn-1(x)+xfn(x)=sinx+對所有的n∈N+都成立.
令x=,可得nfn-1+fn=sin +(n∈N+),
所以nfn-1+fn=(n∈N+).
8